Question

a- What is the maximum speed with which a 1200-kg car can round a turn of...

a- What is the maximum speed with which a 1200-kg car can round a turn of radius 90.0 m on a flat road if the coefficient of static friction between tires and road is 0.60?

Part b

If the jet is moving at a speed of 1140 km/h at the lowest point of the loop, determine the minimum radius of the circle so that the centripetal acceleration at the lowest point does not exceed 6.0 g's.

Express your answer to two significant figures and include the appropriate units.

r =

SubmitRequest Answer

Part c

Calculate the 75-kg pilot's effective weight (the force with which the seat pushes up on him) at the bottom of the circle, and at the top of the circle (assume the same speed).

Express your answers using two significant figures separated by a comma.

FNbottom, FNtop =   N

A coin is placed 16.0 cm from the axis of a rotating turntable of variable speed. When the speed of the turntable is slowly increased, the coin remains fixed on the turntable until a rate of 36.0 rpm (revolutions per minute) is reached, at which point the coin slides off.

Part d

What is the coefficient of static friction between the coin and the turntable?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
P6C A 1550 kg car is making a banked (theta = 20.00)circular turn of 45.0 m...
P6C A 1550 kg car is making a banked (theta = 20.00)circular turn of 45.0 m radius at constant speed. If the coefficient of static friction between the tires and the road is 0.900, determine the maximum speed at which the car can make the turn. Draw a FBD of the car as part of your solution. (FBD shown below, but know how to do this!) what is the maximum speed
A 890-kg race car can drive around an unbanked turn at a maximum speed of 43...
A 890-kg race car can drive around an unbanked turn at a maximum speed of 43 m/s without slipping. The turn has a radius of 150 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 12000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?
A 770-kg race car can drive around an unbanked turn at a maximum speed of 42...
A 770-kg race car can drive around an unbanked turn at a maximum speed of 42 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 12000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?
A curve of radius 20 m is banked so that a 1000 kg car traveling at...
A curve of radius 20 m is banked so that a 1000 kg car traveling at 60 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . ? Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.2. Answer in units of...
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.20 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Part A Determine the speed of the block with mass m = 1.50 kg after the collision. Express your answer...
1) A coin is placed on a large disk which rotates uniformly at a rate of...
1) A coin is placed on a large disk which rotates uniformly at a rate of 2 rot/s. The coefficient of friction between the coin and the disk is 0.1. To what distance from the center of the disk should the coin be placed so that the coin may not slip? 2) A 1663 -kg car moves on a horizontal curved road. If the radius of the curve is 42 m and the coefficient of friction between the tires and...
1A) A car turning in a circle is acceleratring in the centripetal direction, even if the...
1A) A car turning in a circle is acceleratring in the centripetal direction, even if the speed is constant. This centripetal acceleration is the cause of a radially inward directed net force. On a level road this net force is the friction force acting from the road on the tires. You already looked at examples for this. Find an expression for the speed at which a car can negotiate the turn without any friction in the radial direction (f=0). Calculate...
At a playground, a 17-kg child sits on a spinning merry-go-round, as shown from above in...
At a playground, a 17-kg child sits on a spinning merry-go-round, as shown from above in (Figure 1).The merry-go-round completes one revolution every 6.2 s, and the child sits at a radius of r=1.8m. Part A What is the force of static friction acting on the child? Express your answer to two significant figures and include appropriate units. Part B What is the minimum coefficient of static friction between the child and the merry-go-round to keep the child from slipping?
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
A person pushes a 15.0 kg lawn mower at constant speed with a force of 89.0...
A person pushes a 15.0 kg lawn mower at constant speed with a force of 89.0 N directed along the handle, which is at an angle of 45.0∘ to the horizontal. a. Calculate the horizontal friction force on the mower. Express your answer to three significant figures and include the appropriate units. b. Calculate the normal force exerted vertically upward on the mower by the ground. Express your answer to three significant figures and include the appropriate units. c. What...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT