Question

(a) How much charge can be placed on a capacitor with air between the plates before...

(a) How much charge can be placed on a capacitor with air between the plates before it breaks down if the area of each plate is 6.00 cm2? (Assume air has a dielectric strength of 3.00 ✕ 106 V/m and dielectric constant of 1.00.) nC

(b) Find the maximum charge if bakelite is used between the plates instead of air. (Assume bakelite has a dielectric strength of 24.0 ✕ 106 V/m and dielectric constant of 4.9.) nC

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A parallel plate capacitor with air between its plates is charged to 92.71 V and then...
A parallel plate capacitor with air between its plates is charged to 92.71 V and then disconnected from the battery. When an unknown dielectric material is placed between the plates, the voltage across the capacitor drops to 23.552 V. What is the dielectric constant of the unknown material? Assume that the material fills the space between the plates completely. Round your answer to 2 decimal places.
An air-filled capacitor consists of two parallel plates, each with an area of 7.6 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.6 cm2, separated by a distance of 2.20 mm. (a) If a 18.0 V potential difference is applied to these plates, calculate the electric field between the plates. kV/m (b) What is the surface charge density? nC/m2 (c) What is the capacitance? pF (d) Find the charge on each plate. pC
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.70 mm. A 15.0-V potential difference is applied to these plates. (a) Calculate the electric field between the plates. kV/m (b) Calculate the surface charge density. nC/m2 (c) Calculate the capacitance. pF (d) Calculate the charge on each plate. pC
A parallel plate capacitor in air is constructed with a plate area of 7.75cm2 and a...
A parallel plate capacitor in air is constructed with a plate area of 7.75cm2 and a plate separation of 0.664mm. A) Determine the value of the capacitance of this parallel plate capacitor. B) This capacitor is placed across a 21.0 V battery and allowed to fully charge. What is the value of this charge with included units. C) When fully charged, what is the energy stored inside the capacitor? D) With the battery still connected, a pyrex glass dielectric material...
Air filled capacitor #1 has area of plates A and gap d. It is charged to...
Air filled capacitor #1 has area of plates A and gap d. It is charged to the charge Q. Capacitor #2 has area of plates A and gap d, but it is filled with dielectric of dielectric constant K=4. Capacitor #2 is also charged to the charge 2Q. At some moment capacitors are corrected, positive plate to positive plate. When equilibrium is reached, what is the charge of capacitor #2? Q/5 3Q/5 0 Q/2 5Q 3Q/12 4Q Q 2Q 5Q/12...
. An air-filled parallel-plate capacitor has plates of area 2.45 cm2 separated by 1.25 mm. The...
. An air-filled parallel-plate capacitor has plates of area 2.45 cm2 separated by 1.25 mm. The capacitor is connected to a 9.0 V battery. (a) Find the value of its capacitance. (b) What is the charge on the capacitor? (c) What is the magnitude of the uniform electric field between the plates?
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated...
An air-filled capacitor consists of two parallel plates, each with an area of 7.60 cm2, separated by a distance of 1.40 mm. If a 22.4-V potential difference is applied to these plates, calculate the following. (a) the electric field between the plates magnitude     kV/m direction     ---Select--- from the positive plate to the negative plate from the negative plate to the positive plate (b) the capacitance   pF (c) the charge on each plate
A parallel-plate capacitor has plates with an area of 0.012 m2 and a separation of 0.009...
A parallel-plate capacitor has plates with an area of 0.012 m2 and a separation of 0.009 m. The space between the plates is filled with a dielectric whose dielectric constant is 2. What is the potential difference between the plates when the charge on the capacitor plates is 5 ?C? (in kV)
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of...
A water-filled parallel plate capacitor has a plate area of 2.2 cm2 and plate separation of 2.5 mm. The potential difference between its plates is held at 7.0 V. Calculate the magnitude of the electric field between its plates, the charge stored on each plate, and the charge stored on each plate after water is replaced by air. (a) the magnitude of the electric field between its plates -------------V/m (b) the charge stored on each plate ----------- nC (c) the...