Question

The planet Mars has a mass of 6.40x10^23 kg, and travels in a nearly circular orbit...

The planet Mars has a mass of 6.40x10^23 kg, and travels in a nearly circular orbit around the Sun, as shown in the firgure below. When it is at location A, the velocity of Mars is < 0, 0, -4.30x10^4 > m/s. When it reaches location B, the planets velocity is < -3.10x10^4, 0, 0 > m/s. We're looking down on the orbit from above the north poles of the Sun and Mars, with +x to the right and +z down the page.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The sun travels about the center of our galaxy in a nearly circular orbit of radius...
The sun travels about the center of our galaxy in a nearly circular orbit of radius 2.50 x 10^17 km in a period of about 2.00 x 10^8 yr. Compute the magnitudes of the velocity and the acceleration of the sun relative to the center of the galaxy. (1 yr= 3.156 x 10^7 s) Please show formulas.
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our...
Planet Yoyo is discovered to orbit around a star with 5 times the mass of our Sun. It orbits at a distance of 7 AU in a circular orbit. The orbital period is measured to be 8 years. Find: 1) The mass of the planet. Give the answer in both solar masses and kilograms 2) The mass of the star in kilograms 3) The distance of the planets orbit in meters. 4) The force due to gravity between the planet...
A landing craft with mass 1.24×104 kg is in a circular orbit a distance 5.50×105 m...
A landing craft with mass 1.24×104 kg is in a circular orbit a distance 5.50×105 m above the surface of a planet. The period of the orbit is 5100 s . The astronauts in the lander measure the diameter of the planet to be 9.80×106 m . The lander sets down at the north pole of the planet. A) What is the weight of an astronaut of mass 84.4 kg as he steps out onto the planet's surface?
Scientists want to place a 2700 kg satellite in orbit around Mars. They plan to have...
Scientists want to place a 2700 kg satellite in orbit around Mars. They plan to have the satellite orbit a distance equal to 2.4 times the radius of Mars above the surface of the planet. Here is some information that will help solve this problem: mmars = 6.4191 x 1023 kg rmars = 3.397 x 106 m G = 6.67428 x 10-11 N-m2/kg2 1)What is the force of attraction between Mars and the satellite? 2)What speed should the satellite have...
A planet has a circular orbit around a star of mass M. However, the star just...
A planet has a circular orbit around a star of mass M. However, the star just explodes, projecting its outer envelope at a much greater speed than that of the planet in orbit. Its lost mass can, therefore, be considered as having been lost instantaneously. What remains of the star has a mass M ', always greater than that of the planet. What is the eccentricity of the planet's orbit after the explosion? You can neglect the force exerted on...
1) The small spherical planet called "Glob" has a mass of 7.72×1018 kg and a radius...
1) The small spherical planet called "Glob" has a mass of 7.72×1018 kg and a radius of 6.17×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 2.04×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3...
1.Zero, a hypothetical planet, has a mass of 4.9 x 1023 kg, a radius of 3.3 x 106 m, and no atmosphere. A 10 kg space probe is to be launched vertically from its surface. (a) If the probe is launched with an initial kinetic energy of 5.0 x 107 J, what will be its kinetic energy when it is 4.0 x 106 m from the center of Zero? (b) If the probe is to achieve a maximum distance of...
The small spherical planet called "Glob" has a mass of 7.56×1018 kg and a radius of...
The small spherical planet called "Glob" has a mass of 7.56×1018 kg and a radius of 6.44×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.36×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11 Nm2/kg2.)...
a)The small spherical planet called "Glob" has a mass of 8.42×1018 kg and a radius of...
a)The small spherical planet called "Glob" has a mass of 8.42×1018 kg and a radius of 6.41×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.96×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G = 6.67×10-11 Nm2/kg2.)...
(TWO PARTS) The small spherical planet called "Glob" has a mass of 7.46×1018 kg and a...
(TWO PARTS) The small spherical planet called "Glob" has a mass of 7.46×1018 kg and a radius of 6.41×104 m. An astronaut on the surface of Glob throws a rock straight up. The rock reaches a maximum height of 1.56×103 m, above the surface of the planet, before it falls back down. What was the initial speed of the rock as it left the astronaut's hand? (Glob has no atmosphere, so no energy is lost to air friction. G =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT