Question

A car, 1110 kg, is traveling down a horizontal road at 20.0 m/s when it locks...

A car, 1110 kg, is traveling down a horizontal road at 20.0 m/s when it locks up its brakes. The coefficient of friction between the tires and road is 0.901. How much distance will it take to bring the car to a stop? ​

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road
A car of mass 1500 kg is moving on a horizontal and straight road at 20...
A car of mass 1500 kg is moving on a horizontal and straight road at 20 m/s. At some point the driver hits the brakes and the car comes to a stop after it had moved a distance of 36m while the brakes were on. What is the coefficient of the kinetic friction between the wheels of the car and the road?
A 4000 lb. car traveling at 80 mph on a level road locks its wheels and...
A 4000 lb. car traveling at 80 mph on a level road locks its wheels and decelerates at a constant rate. It slides 580 ft. before it stops. Ignore the perception-reaction time of the driver. Answer A.) the time required to stop? B.) acceleration during braking? C.) frictional force between the tires and the road? D.) Coefficient of friction between the tires and the road?
A car is traveling at 15 m/s on a horizontal road. The brakes are applied and...
A car is traveling at 15 m/s on a horizontal road. The brakes are applied and the car skids to a stop in 4.0 s. The coefficient of kinetic friction between the tires and road is: Select one: a. 0.38 b. 0.69 A ball is thrown straight up with a speed of 36.0 m/s. How long does it take to return to its starting point? Select one: a. 7.20 s b. 10.2 s c. 14.7 s d. 11.0 s e....
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road...
A 2300 kg car moving at an initial speed of 25 m/s along a horizontal road skids to a stop in 50 m. (Note: When stopping without skidding and using conventional brakes, 100 percent of the kinetic energy is dissipated by friction within the brakes. With regenerative braking, such as that used in hybrid vehicles, only 70 percent of the kinetic energy is dissipated.) (a) Find the energy dissipated by friction. 718750 Incorrect: Your answer is incorrect. kJ (b) Find...
Traveling at a speed of 15.8 m/s, the driver of an automobile suddenly locks the wheels...
Traveling at a speed of 15.8 m/s, the driver of an automobile suddenly locks the wheels by slamming on the brakes. The coefficient of kinetic friction between the tires and the road is 0.540. What is the speed of the automobile after 1.19 s have elapsed? Ignore the effects of air resistance.
A 2,000 kg car is traveling at 15.0 m/s down a long mountain grade of 2.00%....
A 2,000 kg car is traveling at 15.0 m/s down a long mountain grade of 2.00%. The mountain road is 5.0 km long. The heat generated at the brakes due to friction heats up the brakes. The mass of the brake system is 20.0 kg and it has a specific heat of 0.200 kcal/kg °C. What is the increase in the temperature of the brakes? Multiple Choice 117 °C 95 °C 83 °C 43 °C 54 °C
Bob is driving his car at 20 m/s down a hill with a slope of 5...
Bob is driving his car at 20 m/s down a hill with a slope of 5 degrees. When a deer suddenly jumps out of the woods onto the road, he slams on the brakes, and the car skids to a stop. The mass of the car is 1500 kg, and the coefficient of kinetic friction between the tires and the road is µk = 0.816. a) (3 points) Draw a free-body diagram for the car. b) (3 points) Determine the...
A car of 1000 kg with good tires on a dry road can decelerate (slow down)...
A car of 1000 kg with good tires on a dry road can decelerate (slow down) at a steady rate of about 5.0 m/s2 when braking. If a car is initially traveling at 20 m/s (45 mi/h), (a) How much time does it take the car to stop? (b) What is its stopping distance? (c) What is the deacceleration? (d) How big is the net force to be applied to stop this car? (e) Calculate the work done by this...
Jacqueline is driving on a horizontal highway at 44.7 m/s. If the coefficient of static friction...
Jacqueline is driving on a horizontal highway at 44.7 m/s. If the coefficient of static friction between road and tires on a rainy day is 0.48, what is the minimum distance in which Jacqueline's car will stop? Take g as 9.8 ms-2
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT