Question

A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (?...

A pair of narrow, parallel slits separated by 0.300 mm is illuminated by green light (? = 546.1 nm). The interference pattern is observed on a screen 1.10 m away from the plane of the parallel slits.

(a) Calculate the distance from the central maximum to the first bright region on either side of the central maximum.

________________mm

(b) Calculate the distance between the first and second dark bands in the interference pattern.

________________mm

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and...
A pair of narrow and parallel slits is separated by a distance (d) of 0.750mm and are illuminated by a green light with a wavelength of 562nm. The interference pattern is seen on a viewing screen that is L = 1.80 m away from the plane of the parallel slits. a) Find the distance from the center of the central maximum to the center of the first dark fringe b) calculate the distance from the center of the central maximum...
ASK YOUR TEACHER Light Emitting Diodes (LEDs) are semiconductor devices that emit light at specific wavelengths...
ASK YOUR TEACHER Light Emitting Diodes (LEDs) are semiconductor devices that emit light at specific wavelengths without emitting at any other wavelengths. LEDs can be used to create lasers that are very compact since they are a solid state device. A pair of narrow, parallel slits separated by 0.265 mm are illuminated by a green LED laser (λ = 546.1 nm). The interference pattern is observed on a screen 1.60 m from the plane of the parallel slits. (a) Calculate...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of...
A pair of slits, separated by 0.1 mm, is illuminated by light having a wavelength of 500 nm. An interference pattern is observed on a screen 1.20 m from the slits. (a) Draw the diagram of the double slits and determine how far apart will adjacent bright interference fringes on the screen? (b) What are the angles of the first and second order fringes with respect to the zeroth order fringe? (c) Determine the position of the first and second...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How...
Two narrow slits separated by 0.05 mm are illuminated with light  = 540 nm. How many bands of bright lines are there between the central maximum and the 12-cm position? (The distance between the double slits and the screen is 1 m).
Double-Slit Interference A pair of slits, separated by 0.120 mm, is illuminated by light of wavelength...
Double-Slit Interference A pair of slits, separated by 0.120 mm, is illuminated by light of wavelength 643 nm. An interference pattern is observed on a screen 112 cm from the slits. Consider a point on the screen located at y = 2.10 cm from the central maximum of the pattern… a) What is the path difference (in nm) for the two slits at location y? b) What is the path difference in waves? c) Is this a maximum, a minimum...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 578 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 9.10 cm away from the central bright fringe. Calculate the distance between the two slits. First you have to calculate the angle of the maximum. Then you can use the formula for bright fringes of double slits. Incorrect. Tries 2/20 Previous Tries The screen...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern...
Coherent light (600 nm) passes through two narrow slits separated by 0.04 mm. An interference pattern is observed on a screen at a distance 1.50 m away. (a) What is the vertical distance of the second maximum (not counting the central maximum) from the center of the interference pattern? (b) At what distance from the center does the intensity fall to 1/4th of the intensity at the center?
Orange light with ? = 615 nm strikes a pair of slits separated by 0.620 mm...
Orange light with ? = 615 nm strikes a pair of slits separated by 0.620 mm . Part A: On a screen 1.40 m away, what's the distance between the central maximum and one of the fourth dark fringes? Part B: On a screen 1.40 m away, what's the distance between the third bright fringe on one side of the central maximum and the third dark fringe on the other? Express your answer with the appropriate units.
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100...
A monochromatic light with wavelength 480.0 nm strikes a pair of narrow slits with spacing 0.100 mm. The first dark fringe is formed on a screen at a vertical distance of 1.20 cm from the center of a screen placed in front of the slit. How far away is the screen placed What is the distance on the screen from the center of the interference pattern to the m = 3 bright fringe? What is the shortest distance from the...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference...
Two narrow slits are illuminated by a laser with a wavelength of 543 nm. The interference pattern on a screen located x = 4.50 m away shows that the third-order bright fringe is located y = 7.20 cm away from the central bright fringe. Calculate the distance between the two slits. ("1st order" means m=1, "second order" means m=2, etc).
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT