Question

A CD has been rubbed so that it has a fixed, constant, uniform surface electric charge...

A CD has been rubbed so that it has a fixed, constant, uniform surface electric charge density everywhere on its top surface. It is spinning at angular velocity ? about its center (which is at the origin). What is the surface current density K? at a distance r from the center?

Homework Answers

Answer #1

Please rate
if any mistake in this answer please comment i will clarify your doubt . thank you

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant...
A conducting sphere with a radius of R = 9.3 mm has a uniform and constant surface charge density of teta= 10 nC / m2. What will be the magnitude of the electric field produced by that sphere at a distance from the center of the sphere der = 23.5 cm?
  The earth (a conductor) has a net electric charge. The resulting electric field near the surface...
  The earth (a conductor) has a net electric charge. The resulting electric field near the surface has an average   value of about 150N/C, directed toward the center of earth.   A- What is the corresponding charge density? B- What is the total surface charge of the earth. (ε0=8,85x10-12 MKS)   Two proton are seperated by a distance 10-15m. A-What is the ratio of electric and gravitational force between them.   B- When they are released, calculate their acceleration.   (Charge of proton: 1,6x10-19 C...
In the case of a uniform electric field and a flat surface, the electric flux is...
In the case of a uniform electric field and a flat surface, the electric flux is defined as the dot product of the electric field and the area, where the direction of the area is the normal to the area pointing out of a closed region. Consider a cube that measures 4.0 m on edge. The edges lie along the coordinate axes x, y, and z, with one corner at the origin, and the other corners having positive coordinates. A...
In a constant uniform electric field, a particle with charge −100 ?? is moved from the...
In a constant uniform electric field, a particle with charge −100 ?? is moved from the origin a distance ? = 0.80 ? straight in the direction of the electric field lines. The field has a strength of 5.0 ? ? . a) What is the voltage difference between the initial and final position? b) How much work is done to move the charge? c) Does the charge gain or lose electrical potential energy in the process of this move?...
A charge distribution that is spherically symmetric but not uniform radially produces an electric field of...
A charge distribution that is spherically symmetric but not uniform radially produces an electric field of magnitude E = 5r4, directed radially outward from the center of the sphere. Here r is the radial distance from that center. What is the volume charge density ρ of the charge distribution at a distance of r = 2m? Express your answer in units of nano coulombs/m3 i.e. 10-9 C/m3 Specify your answer up to two decimal places
Consider a rotating disk of radius R with uniform surface charge density σ and angular rotation...
Consider a rotating disk of radius R with uniform surface charge density σ and angular rotation speed ω. (a) show that for an annular strip of radius r, and width dr that the current dI = ωσrdr HINT: see class notes from previous week (b) Show that the magnetic field in the center of the disk is given by B = 1μ0σωR 2
A thin disk with radius R has a surface charge density varying with σ = Cr....
A thin disk with radius R has a surface charge density varying with σ = Cr. C is a positive constant and r is the distance from the disk center. Find the electrical potential on the axis perpendicular to the center of the disc and at a point P about x away from the center.
Two charged droplets of toner ink behave as two shells of uniform surface charge density. (Toner...
Two charged droplets of toner ink behave as two shells of uniform surface charge density. (Toner is an insulating material, not conductive.) The two drops have total charge qi, radiusRi, and centre positionri,i= 1,2. Assuming the drops do not overlap, derive the electric potential, V(r), everywhere inside and outside the spheres. Is the voltage (potential) inside shell 1 constant? In this last question, shouldn't we take into consideration the potential created by the other sphere?
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge...
A solid sphere of nonconducting material has a uniform positive charge density ρ (i.e. positive charge is spread evenly throughout the volume of the sphere; ρ=Q/Volume). A spherical region in the center of the solid sphere is hollowed out and a smaller hollow sphere with a total positive charge Q (located on its surface) is inserted. The radius of the small hollow sphere R1, the inner radius of the solid sphere is R2, and the outer radius of the solid...
Two nonconducting spherical shells with uniform surface charge densities have their centers at a distance of...
Two nonconducting spherical shells with uniform surface charge densities have their centers at a distance of d = 115 cm apart. The smaller shell with radius 15.0 cm has a surface charge density of +4.9 µC/m2, while the larger shell with radius 32.0 cm has a surface charge density of +13.0 µC/m2.Determine the net electric field vector at y1 = −93.0 cm.