Question

Air enters the evaporator section of a window air conditioner at 14.7 psia and 90°F with...

Air enters the evaporator section of a window air conditioner at 14.7 psia and 90°F with a volume flow rate of 200 ft3 /min. Refrigerant-134a at 20 psia with a quality of 30 percent enters the evaporator at a rate of 4 lbm/min and leaves as saturated vapor at the same pressure. Determine (a) the exit temperature of the air and (b) the rate of heat transfer from the air.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration...
An air conditioner using refrigerant-134a as the working fluid and operating on the ideal vapor-compression refrigeration cycle is to maintain a space at 36°C while operating its condenser at 1600 kPa. Determine the COP of the system when a temperature difference of 4°C is allowed for the transfer of heat in the evaporator. (Take the required values from saturated refrigerant-134a tables.)
Atmosphric air at 40 F and 50% relative humidity enters the heating section of an airconditioning...
Atmosphric air at 40 F and 50% relative humidity enters the heating section of an airconditioning device at a volumetric flow rate of 100ft^3/min. Water vapor is added to the heated air to increase the relative humidity to 55%. The temperature after the heating section is 72F and the temperature at the exit is 74F. Using the appropriate fomulas: a) determine the rate of the heat transfer in Btu/min. b) determine the mass flow of water vapor in lbm/min.
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor...
An ice-making machine operates on the ideal vapor-compression cycle, using refrigerant-134a. The refrigerant enters the compressor as saturated vapor at 20 psia and leaves the condenser as saturated liquid at 80 psia. Water enters the ice machine at 55°F and leaves as ice at 25°F. For an ice production rate of 15 lbm/h, determine the power input to the ice machine (169 Btu of heat needs to be removed. Compressor's efficiency is 90 percent
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12)...
- a vapour-compression air-conditioning cycle where the compressor has an isentropic efficiency of 75%. Refrigerant (R12) is used as the working fluid with a mass now rate of 0.04kg/s. saturated vapour eaters the compressor at 0.5 MPa and leaves to the condenser at 1.2IMPa. The air-conditioner cools down the station to 26°C through an evaporator, and rejects heat to the 34°C ambient through a condenser. (a) Sketch and label the schematic of the air-conditioning cycle and its T-S and P-h...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity...
Refrigerant 134a is the working fluid in a vapor-compression heat pump system with a heating capacity of 60,000 Btu/h. The condenser operates at 240 lbf/in.2, and the evaporator temperature is 0°F. The refrigerant is a saturated vapor at the evaporator exit and a liquid at 110°F at the condenser exit. Pressure drops in the flows through the evaporator and condenser are negligible. The compression process is adiabatic, and the temperature at the compressor exit is 180°F. Determine (a) the mass...
Steam enters an adiabatic turbine at 1,000 psia and 900 F with a mass flow rate...
Steam enters an adiabatic turbine at 1,000 psia and 900 F with a mass flow rate of 6 lbm/s and leaves at 5 psia. The isentropic efficiency of the turbine is 0.90. Neglect the kinetic and potential energy changes of the steam. What is the quality at the isentropic exit state, 2s (X2s)? What is the exit temperature of the steam (T2)? What is the power output of the turbine?
Air is heated as it flows through a constant diameter tube. The air enters the tube...
Air is heated as it flows through a constant diameter tube. The air enters the tube at 50 psia and 80 F with an average velocity of 10 ft/s at the entrance. The air leaves at 45 psia and 255 F. a) Sketch the control volume b) Determine the average velocity of the air (ft/s) at the exit c) If 23 lbm/min of air is to be heated, what diameter (in.) tube is required?
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature...
An idea vapor-compression refrigeration cycle, with refrigerant R-22 as the working fluid, has an evaporator temperature of -12 °C and a condenser pressure of 15 bar. Saturated vapor enters the compressor, and saturated liquid exits the condenser. The refrigerating capacity is 4 tons. a.Determine the compressor power (in kW). b.Determine the mass flow rate of the refrigerant (in kg/min). c.Determine the coefficient of performance.
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a...
4.58 Air enters a compressor operating at steady state with a pressure of 14.7 lbf/in^2, a temperature of 808 F, and a volumetric flow rate of 18 ft /s. The air exits the compressor at a pressure of 90 lbf/in^2 Heat transfer from the compressor to its surroundings occurs at a rate of 9.7 Btu per lb of air flowing. The compressor power input is 90 hp. Neglecting kinetic and potential energy effects and modeling air as an ideal gas,...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the...
Consider a commercial refrigerator which operates on the refrigeration cycle. R- 134a is used as the working uid and the refrigerated space is kept at -25oC by rejecting its waste heat to cooling water that enters the condenser at room temperature, that is 20oC, at a rate of 0.1 kg/s and leaves at 40oC. The refrigerant enters the condenser at 1.2 MPa and 70oC and leaves at 40oC. The inlet state of the compressor is saturated vapor at 100 kPa...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT