Question

A point charge moving in a magnetic field of 1.27 Tesla experiences a force of 0.630·10-11...

A point charge moving in a magnetic field of 1.27 Tesla experiences a force of 0.630·10-11 N. The velocity of the charge is perpendicular to the magnetic field. In this problem, we use the points of the compass and `into' and `out of' to indicate directions with respect to the page. If the magnetic field points south and the force points out of the page, then select True or False for the charge Q.

a. Q is negative, moving west.

b. Q is positive, moving west.

c. Q is positive, moving east.

d. Q is negative, moving north.

e. Q is negative, moving east.

f. The speed of the charge is 0.310·108 m/s. Calculate the magnitude of the charge.

g.The path of the charge in the magnetic field is a circle. Assume that the charge is positive and has a mass of 1.673·10-27 kg, the mass of a proton. What is the radius of the circle?

h. What is the orbital frequency of the charge in the previous problem?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A point charge moving in a magnetic field of 1.30 Tesla experiences a force of 0.853·10-11...
A point charge moving in a magnetic field of 1.30 Tesla experiences a force of 0.853·10-11 N. The velocity of the charge is perpendicular to the magnetic field. In this problem, we use the points of the compass and `into' and `out of' to indicate directions with respect to the page. 1.) If the magnetic field points west and the force points out of the page, then select True or False for the charge Q. True False Q is negative,...
A point charge moving in a magnetic field of 1.21 Tesla experiences a force of 0.794·10-11...
A point charge moving in a magnetic field of 1.21 Tesla experiences a force of 0.794·10-11 N. The velocity of the charge is perpendicular to the magnetic field. In this problem, we use the points of the compass and `into' and `out of' to indicate directions with respect to the page. If the magnetic field points west and the force points out of the page, then select True or False for the charge Q. 1) True or False: Q is...
A) Equally charged chlorine ions of mass 37 amu now enter the spectrometer. How close to...
A) Equally charged chlorine ions of mass 37 amu now enter the spectrometer. How close to the detector slit will they impact? B) A point charge moving in a magnetic field of 1.18 Tesla experiences a force of 0.774E-11 N. The velocity of the charge is perpendicular to the magnetic field.In this problem, we use the points of the compass and `into' and `out of' to indicate directions with respect to the page. If the magnetic field points south and...
The direction of force on a moving electric charge in a magnetic field is (Select all...
The direction of force on a moving electric charge in a magnetic field is (Select all that apply) in the direction of the magnetic field in the directions of the charge perpendicular to the magnetic field perpendicular to the direction of the motion of the charge none of the above
A positive charge is moving at 3 m/s to the right in a magnetic field pointing...
A positive charge is moving at 3 m/s to the right in a magnetic field pointing to the top of the page. In what direction is the force on the charge, if any? Now replace the positive charge with a negative charge. In what direction is the force now? Sketch the situation.
Indicate the direction of the magnetic force of: Note: North (+y), East (+x), South (-y), West...
Indicate the direction of the magnetic force of: Note: North (+y), East (+x), South (-y), West (-x), Upward (+z) and Downward (-z) Question 1) an electron moving upward in a magnetic field directed East 2) a proton moving Downward in a magnetic field directed North 3) a neutron moving East in a magnetic field directed Downward 4) a stationary proton in a magnetic field directed East 5) a +10 C point charge moving West in a magnetic field directed East...
A moving proton experiences force from a magnetic field. true or false If the charged particle...
A moving proton experiences force from a magnetic field. true or false If the charged particle experiences a downward force (towards the bottom of the screen), what is the sign of the charge? true or false If there were an electric field pointing into the computer screen instead of a magnetic field, what would be the direction of force on the charge?
1.When a charge q is placed at a certain point in an electric field, it experiences...
1.When a charge q is placed at a certain point in an electric field, it experiences a force toward the west of magnitude F. If instead a change 2q were placed at that same point what force would it experience? A.a force toward the east, of magnitude F/2 B.a force toward the east, of magnitude F C.a force toward the east, of magnitude 2F D.a force toward the west, of magnitude F/2 E.a force toward the west, of magnitude F...
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic...
1)A particle moving to the right in a uniform magnetic field directed upwards experiences a magnetic force directed inwards. The particle is (A) positively charged. (B) negatively charged. (C) uncharged. (D) Either A or B. (E) Any of the above. 2) A charged particle moves in a uniform magnetic field which is perpendicular to the particle’s velocity. Which of the following statements is/are correct? (A) The particle moves in a circle. (B) The kinetic energy of the particle does not...
A particle with charge −− 5.80 nC is moving in a uniform magnetic field B=−( 1.27...
A particle with charge −− 5.80 nC is moving in a uniform magnetic field B=−( 1.27 T )k^. The magnetic force on the particle is measured to be F→=−( 3.50×10−7 N )i^+( 7.60×10−7 N )j^. Part B Calculate the x-component of the velocity of the particle. Express your answer in meters per second. Part C Calculate the y-component of the velocity of the particle. Express your answer in meters per second.