Question

A simple one dimensional model of solid consists of a series of masses, each of mass...

A simple one dimensional model of solid consists of a series of masses, each of mass m, joined by springs of force constant C, with equilibrium separation a. Assume that only nearest neighbour interactions are important.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a perfectly elastic, one-dimensional collision in the following scenarios and find each masses final velocity....
Consider a perfectly elastic, one-dimensional collision in the following scenarios and find each masses final velocity. a) m=2kg with v0=55m/s M=250kg with v0=0m/s b) m=12kg with v0=20m/s M=1kg with v0=-10m/s c) m=24.5kg with v0=35.7m/s M=24.5kg with v0=0m/s
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is...
A simple harmonic oscillator consists of a mass of 100g attached to a constant spring is 10^4 dynas/cm. At time t=0, the mass is about 3 cm from the equilibrium point and with an initial velocity of 5cm/s, both in the positive direction.A dissipative force is now added. Assume that you start moving from rest at the maximum amplitude position, and after oscillating for 10 s, your maximum amplitude is reduced to half of the initial value. Calculate: A- dissipation...
Three identical very dense masses of 7400 kg each are placed on the x axis. One...
Three identical very dense masses of 7400 kg each are placed on the x axis. One mass is at x1= -120 cm , one is at the origin, and one is at x2 = 340 cm . Part A What is the magnitude of the net gravitational force Fgrav on the mass at the origin due to the other two masses? Take the gravitational constant to be G = 6.67×10−11 N⋅m^2/kg^2 Express your answer in newtons to three significant figures....
Model a piston in an engine as a mass on a spring that is undergoing simple...
Model a piston in an engine as a mass on a spring that is undergoing simple harmonic motion. The mass of the piston is 0.583 kg, and the period of the motion is 1.54 seconds. The motion has an amplitude of 0.0902 meters, meaning the distance between the center of the motion and each end of the motion. Assume that the mass starts out with the spring stretched as far as it is going to go, so that the phase...
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from...
Simple Pendulum with Gravity A pendulum consists of a mass m = 0.08 kg hanging from a flexible string of length L. The string is very thin, very light, and does not stretch. It makes small oscillations, with a period of 0.622 s. What is the oscillation frequency of the pendulum? Neglect any air resistance. What would the period of the pendulum be on the moon's surface? Indicate for each of the following statements whether it is correct or incorrect....
Two identical cork balls, each of mass m, are hung from a common point by two...
Two identical cork balls, each of mass m, are hung from a common point by two insulating threads of negligible mass, each of length L = 50.0 cm. Each ball has a charge Q = - 0.2 C distributed uniformly over its volume. The balls repel each other and assume an equilibrium position as shown. ( 30° from the center line.) a) Draw a free-body force diagram for one of the two masses. b) Write down ∑Fx = max and...
A simple pendulum consists of a ball of mass m suspended from the ceiling using a...
A simple pendulum consists of a ball of mass m suspended from the ceiling using a string of length L. The ball is displaced from its equilibrium position by a small angle θ and released. Which one of the following statements concerning this situation is correct? (a) If the mass were increased, the period of the pendulum would increase. (b) The frequency of the pendulum does not depend on the acceleration due to gravity. (c) If the length of the...
Simple Harmonic Motion: Mass on Spring (Explanation of lab.) [ The intentions of this lab were...
Simple Harmonic Motion: Mass on Spring (Explanation of lab.) [ The intentions of this lab were to further our understanding of spring mass motion by creating a harmonic motion system to find values for spring force and oscillation periods. By the end of the experiment, our group was able to experimentally determine how the measure of spring constant, k, in a harmonic motion system depends upon oscillation periods and ??y. We began our finding of k by running the experiment...
A massless spring of spring constant k = 4872 N/m is connected to a mass m...
A massless spring of spring constant k = 4872 N/m is connected to a mass m = 210 kg at rest on a horizontal, frictionless surface. Part (a) The mass is displaced from equilibrium by A = 0.73 m along the spring’s axis. How much potential energy, in joules, is stored in the spring as a result? Part (b) When the mass is released from rest at the displacement A= 0.73 m, how much time, in seconds, is required for...
provides one model for solving this type of problem. Two wheels have the same mass and...
provides one model for solving this type of problem. Two wheels have the same mass and radius of 4.8 kg and 0.38 m, respectively. One has (a) the shape of a hoop and the other (b) the shape of a solid disk. The wheels start from rest and have a constant angular acceleration with respect to a rotational axis that is perpendicular to the plane of the wheel at its center. Each turns through an angle of 12 rad in...