Question

Consider the arrangement of three small charged spheres, each of mass 14 g, shown in the...

Consider the arrangement of three small charged spheres, each of mass 14 g, shown in the figure. The spheres have equal charges of 65 nC and are positioned on the vertices of an equilateral triangle, with side length 37 cm.

Homework Answers

Answer #1

If these spheres are released at precisely the same time, how fast, in meters per second, will they be moving when they are infinitely far away form each other?

Solution.

The type of mechanical energy that solely depends on the state of motion of the body is kinetic energy of that body. This energy cannot be developed for a body that is at rest.

Please upvote.

Thanku

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as...
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as shown in the figure. The length Lof each string is 0.7 m, and the angle theta is 50. Find the magnitude of the charge on each sphere in (nC).(ke=9*109N.m2/C2)
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as...
Two identical small, charged spheres, each having a mass of 30 g, hang in equilibrium as shown in the figure. The length L of each string is 0.3 m, and the angle theta is 50. Find the magnitude of the charge on each sphere in (nC).(ke= 9*109 N.m2/C2)
The figure below shows three small, positively charged spheres at three corners of a rectangle. The...
The figure below shows three small, positively charged spheres at three corners of a rectangle. The particle at upper left has a charge q1 = 6.00 nC, the one at the lower left has a charge of q2 = 7.00 nC, and the one at lower right has a charge q3 = 3.00 nC. The rectangle's horizontal side has length x = 5.50 cm and its vertical side has length y = 3.50 cm. Three positive charges lie at three...
In the figure three identical conducting spheres form an equilateral triangle of side length d =...
In the figure three identical conducting spheres form an equilateral triangle of side length d = 26.4 cm. The sphere radii are much smaller than d and the sphere charges are qA = -3.65 nC, qB = -4.20 nC, and qC = +9.17 nC. (a) What is the magnitude of the electrostatic force between spheres A and C? The following steps are taken: A and B are connected by a thin wire and then disconnected; B is grounded by the...
Three charged particles are located at the corners of an equilateral triangle as shown in the...
Three charged particles are located at the corners of an equilateral triangle as shown in the figure below (let q = 2.80 µC, and L = 0.790 m). Calculate the total electric force on the 7.00-µC charge. magnitude N direction ° (counterclockwise from the +x axis) Three charged particles lie in the x y coordinate plane at the vertices of an equilateral triangle with side length L. Positive charge q is at the origin. A charge of 7.00 µC is...
Three identical small metal spheres form an equilateral triangle of side length d = 3.5 cm....
Three identical small metal spheres form an equilateral triangle of side length d = 3.5 cm. Initially, q1 = +2.0 nC, q2 = +6.0 nC, and q3 = ?8.0 nC. Sphere 2 is first moved to touch sphere 1, then moved again to touch sphere 3, and finally returned to the original position. What now is the magnitude of the electrostatic force exerted on sphere 1 by the other two spheres (in N)? The answer was: 1.0*10^4 N
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the...
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.43 m. Two of the spheres have a mass of 3.49 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the...
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.24 m. Two of the spheres have a mass of 2.59 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the...
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 1.12 m. Two of the spheres have a mass of 2.64 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the...
Three uniform spheres are located at the corners of an equilateral triangle. Each side of the triangle has a length of 0.740 m. Two of the spheres have a mass of 3.96 kg each. The third sphere (mass unknown) is released from rest. Considering only the gravitational forces that the spheres exert on each other, what is the magnitude of the initial acceleration of the third sphere?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT