Question

A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of...

A mass attached to a spring oscillates with a period of 1.12·s and an amplitude of 40·cm. At time t = 0 the mass is at x = +28·cm and is moving in the positive direction (away from equilibrium). What is the phase constant? (degrees) Where is it at time t = 4.5·s? (cm)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An air-track glider attached to a spring oscillates with a period of 2.66 s. At t=0...
An air-track glider attached to a spring oscillates with a period of 2.66 s. At t=0 s the glider is 2.1 cm left of the equilibrium position and moving to the right at 39.62 cm/s. a)What is the phase constant? (in degrees) b) What is the phase at t=0 s (in degrees) c) What is the phase at t=0.5s (in degrees) d) What is the phase at t=1 s? (in degrees) e) What is the phase at t=1.5 s? (in...
A mass attached to a spring oscillates with a period of 3.26 s. If the mass...
A mass attached to a spring oscillates with a period of 3.26 s. If the mass starts from rest at x = 0.0410 m and time t = 0, where is it at time t = 3.27 s?
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0...
An air track glider attached to a spring oscillates with a period 1.50 s. At t=0 s the glider is 4.60 cm left of the equilibrium position and moving to the right at 33.4 cm/s. a) What is the phase constant?
An air-track glider attached to a spring oscillates with a period of 1.5 s. At t...
An air-track glider attached to a spring oscillates with a period of 1.5 s. At t = 0 s the glider is 5.00 cm left of the equilibrium postion and moving to the right at 36.3 cm/s. a) What is the phase constant? b) What is the phase at t = 0 s, 0.5 s, 1.0 s, and 1.5 s?
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz...
A 255 g mass attached to a horizontal spring oscillates at a frequency of 5.50 Hz . At t =0s, the mass is at x= 4.40 cm and has vx =− 34.0 cm/s . Determine: The period. The angular frequency. The amplitude. The phase constant.
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.90 cm left of the equilibrium position and moving to the right at 35.6 cm/s . What is the phase at t=0.5s?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 5.50 cm left of the equilibrium position and moving to the right at 39.9 cm/s . Part A:What is the phase constant? Part B: B. What are the phases at t = .5, 1.0, and 1.5 s? Answer in rad.
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
An air-track glider attached to a spring oscillates with a period of 1.50 s . At...
An air-track glider attached to a spring oscillates with a period of 1.50 s . At t=0s the glider is 4.50 cmcm left of the equilibrium position and moving to the right at 32.6 cm/s . Part A. What is the phase constant? Express your answer to three significant figures and include the appropriate units.
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2...
1. A mass is attached to a horizontal spring, and oscillates with a period of 1.2 s and with an amplitude of 14 cm. At t = 0 s, the mass is 14 cm to the right of the equilibrium position. a) Write down the function for the position, velocity, and acceleration of the mass as a function of time. The only variable you should have in your expressions is time. Make sure you indicate the units for each function....
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT