Question

Two interesting quantities are the most likely position of a particle and the average position of...

Two interesting quantities are the most likely position of a particle and the average position of the particle. Consider an electron in an infinite potential well of width 0.1 nm in the first excited state n = 2.
(a) What is its most likely position? (b) What is its average position?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An electron is in the 4th excited state within a bound infinite square well with a...
An electron is in the 4th excited state within a bound infinite square well with a finite length. It transitions to the lower state n = 3, emitting a photon of wavelength 368.0 nm. a) Determine the width of the well. b) Sketch the probability distribution of finding the electron in the n = 4 state, indicating where the most likely positions the particle will be found. What is the likelihood of finding the particle within the first half of...
Consider a particle trapped in an infinite square well potential of length L. The energy states...
Consider a particle trapped in an infinite square well potential of length L. The energy states of such a particle are given by the formula: En=n^2ℏ^2π^2 /(2mL^2 ) where m is the mass of the particle. (a)By considering the change in energy of the particle as the length of the well changes calculate the force required to contain the particle. [Hint: dE=Fdx] (b)Consider the case of a hydrogen atom. This can be modeled as an electron trapped in an infinite...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited...
Suppose that an electron trapped in a one-dimensional infinite well of width 0.341 nm is excited from its first excited state to the state with n = 5. 1 What energy must be transferred to the electron for this quantum jump? 2 The electron then de-excites back to its ground state by emitting light. In the various possible ways it can do this, what is the shortest wavelengths that can be emitted? 3 What is the second shortest? 4 What...
Find the wave function for the ground state and first two excited states for a particle...
Find the wave function for the ground state and first two excited states for a particle in an infinitely deep square well of width a. Show that the uncertainty relation is satisfied for position and momentum.
A particle is in the ground state of an infinite square well. The potential wall at...
A particle is in the ground state of an infinite square well. The potential wall at x = L suddenly (i.e., instantaneously) moves to x = 3L. such that the well is now three times its original size. (a) Let t = 0 be at the instant of the sudden change in the potential well. What is ψ(x, 0)? (b) If you measure the energy of the particle in the new well, what are the possible energies? (c) Estimate the...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well...
II(20pts). Short Problems a) The lowest energy of a particle in an infinite one-dimensional potential well is 4.0 eV. If the width of the well is doubled, what is its lowest energy? b) Find the distance of closest approach of a 16.0-Mev alpha particle incident on a gold foil. c) The transition from the first excited state to the ground state in potassium results in the emission of a photon with  = 310 nm. If the potassium vapor is...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L,...
Exercise 3. Consider a particle with mass m in a two-dimensional infinite well of length L, x, y ∈ [0, L]. There is a weak potential in the well given by V (x, y) = V0L2δ(x − x0)δ(y − y0) . Evaluate the first order correction to the energy of the ground state.    Evaluate the first order corrections to the energy of the first excited states for x0 =y0 = L/4. For the first excited states, find the points...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle...
A particle is confined to the one-dimensional infinite potential well of width L. If the particle is in the n=2 state, what is its probability of detection between a) x=0, and x=L/4; b) x=L/4, and x=3L/4; c) x=3L/4, and x=L? Hint: You can double check your answer if you calculate the total probability of the particle being trapped in the well. Please answer as soon as possible.
Considera particle in the ground state of an infinite square well where the left half of...
Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time τ, and then falls back at a linear rate in a time τ. What is the probability that the particle is now in the first excited state?
quantum physics: Considera particle in the ground state of an infinite square well where the left...
quantum physics: Considera particle in the ground state of an infinite square well where the left half of the well rises at a linear rate to a potential of V0in a time t, and then falls back at a linear rate in a time t. What is the probability that the particle is now in the first excited state?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT