Question

A 16.3 kg block is dragged over a rough, horizontal surface by a constant force of...

A 16.3 kg block is dragged over a rough, horizontal surface by a constant force of 184 N acting at an angle of angle 34.9 ? above the horizontal. The block is displaced 44 m and the coefficient of kinetic friction is 0.131. 16.3 kg µ = 0.131 184 N 34.9 ? Find the work done by the 184 N force. The acceleration of gravity is 9.8 m/s 2 . Answer in units of J. 005 (part 2 of 5) 10.0 points Find the magnitude of the work done by the force of friction. Answer in units of J. 006 (part 3 of 5) 10.0 points What is the sign of the work done by the frictional force? 1. negative 2. zero 3. positive 007 (part 4 of 5) 10.0 points Find the work done by the normal force. Answer in units of J. 008 (part 5 of 5) 10.0 points What is the net work done on the block? Answer in units of J.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at...
An 8.5-kg block is pushed along a horizontal rough surface by a 40-N force inclined at 20° with the horizontal. The coefficient of friction between the surface and block is 0.35. If the block has an initial velocity of 3.6 m/s and the force does 200 J of work on the block, find: (a) The total distance moved by the block. (b) The final velocity of the block.
Part 1) A 1.0 kg block is pushed 2.0 m at a constant velocity up a...
Part 1) A 1.0 kg block is pushed 2.0 m at a constant velocity up a vertical wall by a constant force applied at an angle of 29.0 ◦ with the horizontal, as shown in the figure. The acceleration of gravity is 9.81 m/s 2. Drawing not to scale. If the coefficient of kinetic friction between the block and the wall is 0.20, find a) the work done by the force on the block. Answer in units of J. Part...
A block of mass4 kgkg  is dragged up an inclined plane. The plane is inclined at an...
A block of mass4 kgkg  is dragged up an inclined plane. The plane is inclined at an angle of 45degrees to the horizontal. The coefficient of kinetic friction between the block and the plane is 0.5. What force is needed to drag the block up the plane at a constant speed? What force is needed to accelerate the block up the plane at a rate of 5 meters per second squared? If the force acting in Part-B drags the block by...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with...
A 6.0-kg block initially at rest is pulled to the right along a horizontal surface with a force of 12 N. The force of kinetic friction is 3N. a. Draw a free-body diagram of the situation. b. Find the work done by the 12 N force on the block to move the block 3m? c. Find the work done by the force of friction on the block when the block was moved 3m? d. Use the work-energy principle to find...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 48.0 N at an angle θ above the horizontal. After the block is pulled through a distance of 16.0 m its speed is v = 2.10 m/s, and 40.0 J of work has been done on it.What is the mass of the block? (Answer in kg)
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring...
A 2.5-kg block is sliding along a rough horizontal surface and collides with a horizontal spring whose spring constant is 320 N/m. Unstretched, the spring is 20.0 cm long. The block causes the spring to compress to a length of 12.5 cm as the block temporarily comes to rest. The coefficient of kinetic friction between the block and the horizontal surface is 0.25. a) How much work is done by the spring as it brings the block to rest? b)...
A block of mass m = 3.57 kg is drawn at a constant speed of 4.06...
A block of mass m = 3.57 kg is drawn at a constant speed of 4.06 m along a horizontal floor by a rope exerting a constant force of 7.68 N at an angle of 15.0˚ above the horizontal. Determine the work done on the block by the rope, the work done by friction and the coefficient of kinetic friction between the floor and block.
A box is pushed up an incline at a constant speed by a horizontal force of...
A box is pushed up an incline at a constant speed by a horizontal force of 30 N. The angle of the incline is 15.4 degrees. The box has a mass of 3.1 kg and moves a total distance of 2.96 m. The coefficient of kinetic friction between the box and the ramp is 0.59. What is the work done by the gravitational force during this motion? J What is the work done by the friction force during this motion?...
A box with mass 1.74 kg is being pulled across a rough surface at a constant...
A box with mass 1.74 kg is being pulled across a rough surface at a constant speed with a coefficient of kinetic friction µk = 0.366. The pulling force has a magnitude of 11.2 N and is directed at an angle 32.8 degrees above horizontal. If the box is dragged a distance of 10.3 m, what is the total energy lost to friction? (Hint: be sure to account for the upward component of the pulling force, and note that the...
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance...
A horizontal force of magnitude 32.5 N pushes a block of mass 4.05 kg a distance of 3.00 m across a floor, where the coefficient of kinetic friction is 0.600. (a) How much work is done by that applied force on the block-floor system? (b) During that displacement, the thermal energy of the block increases by 36.0 J. What is the increase in thermal energy of the floor? (c) What is the increase in the kinetic energy of the block?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT