Question

At most, how many bright fringes can be formed on either side of the central bright...

At most, how many bright fringes can be formed on either side of the central bright fringe when light of wavelength 619 nm falls on a double slit whose slit separation is 3.08 × 10-6 m?

Homework Answers

Answer #1

Solution:

Using a double slit whose slit separation,

dSin = m

m = dSin/

For find maximum number of bright fringes Substitute = 90o

m = 3.08*10-6 *sin90o/619*10-9

= 4.9757

= 5.

The great number of bright fringes = 5 .

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
At most, how many bright fringes can be formed on either side of the central bright...
At most, how many bright fringes can be formed on either side of the central bright fringe when light of wavelength 557 nm falls on a double slit whose slit separation is 3.36 × 10-6 m?
How many dark fringes will be produced on either side of the central maximum if light...
How many dark fringes will be produced on either side of the central maximum if light ( = 682 nm) is incident on a single slit that is 5.11 × 10-6 m wide?
How many dark fringes will be produced on either side of the central maximum if light...
How many dark fringes will be produced on either side of the central maximum if light with a wavelength of λ = 651 nm is incident on a single slit that is 5.47 × 10−6 m wide? Please show work and equations used to help me understand how to get to the correct answer (posted below) Answer: 16
a)How many bright interference fringes appear between the first diffraction minima to either side of the...
a)How many bright interference fringes appear between the first diffraction minima to either side of the central maximum if the light is 550 nm, d = 0.15 mm, and a = 0.003 mm? b)What is the ratio of the intensity of the 3rd bright interference fringe to the intensity of the central fringe? Answer: 0.255 Please carefully write all steps in a clear manner.
light of wavelength 580 nm is incident on a slit of width 5.47 x 10^-6m. An...
light of wavelength 580 nm is incident on a slit of width 5.47 x 10^-6m. An observing screen is placed 2.00 m from the slit. A) Find he position of the first order dark fringe from the center of the screen (in meters) B) At most, how many dark fringes can be formed on either side of the central bright fringe (assuming that the observing screen is infinitely long)?
A double-slit set up produces bright fringes for sodium light ( = 589 nm) such that...
A double-slit set up produces bright fringes for sodium light ( = 589 nm) such that the first bright fringe is at an angle of 0.20°. (a) What is the slit separation? (b) Suppose the two slits, the screen, and intervening space are immersed in water, but the source of the sodium light stays outside the water. What will be the wavelength of the sodium light once it enters the water? (c) What is the location of the first bright...
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100...
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a) How wide on the screen is the central bright fringe? (b) What is the distance on the screen between first-order and second-order bright fringes? (c) What is the angular separation (in radians) between the central maximum and the first-order maximum?   
Blue light (λ = 450 nm) is used in a double slit experiment with the slits...
Blue light (λ = 450 nm) is used in a double slit experiment with the slits separated by d = 2.10 × 10^-4 m. The distance between the third order bright fringe and the central bright fringe is 1.93 × 10^-2 m. (a) (3 pts.) Determine the distance between the double slit and the screen. (b) (3 pts.) Calculate the width of the central bright fringe, i.e. the separation of the two zeroth order dark fringes. (c) (3 pts.) The...
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The...
Bichromatic light of wavelengths λ1=572λ1=572 nm and λ2=647λ2=647 nm is incident on a double-slit plate. The separation between the slits dd and the width of each slit are not given. The distance between the viewing screen and the plate is L=1.0L=1.0m. The first interference maximum of the 572 nm-wavelength of light is observed at y1=4.4y1=4.4 mm. What is the slit spacing, dd? Using the far-field approximation, calculate the separation between the m=3m=3 interference maxima of λ1λ1 and λ2λ2. There is...
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a...
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a is 0.1 mm. Consider the interference of the light from the two slits and also the diffraction of the light through each slit. (a) How many bright interference fringes are within the central peak of the diffraction envelope? (b) How many bright fringes are within either of the first side peaks of the diffraction envelope?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT