Question

You push a 4.5 kg block against a horizontal spring, compressing the spring by 26 cm. Then you release the block, and the spring sends it sliding across a tabletop. It stops 84 cm from where you released it. The spring constant is 280 N/m. What is the coefficient of kinetic friction between the block and the table?

Answer #1

You push a 3.2 kg block against a horizontal spring, compressing
the spring by 16 cm. Then you release the block, and the spring
sends it sliding across a tabletop. It stops 62 cm from where you
released it. The spring constant is 170 N/m. What is the
coefficient of kinetic friction between the block and the
table?

A man pushes a 4.0 kg block against a horizontal spring,
compressing the spring by 20 cm. Then the man releases the block,
and the spring sends it sliding across a tabletop. It stops 90 cm
from where you released it. The spring constant is 325 N/m. What is
the block–table coefficient of kinetic friction?
A.
0.47
B.
0.97
C.
0.57
D.
0.37

A 2.00 kg block sliding on a horizontal surface makes contact
with a spring, compressing
the spring (the other end of the spring is attached to a rigid
wall). At the instant of
contact, the block has a speed of 12.0 m/s. The coefficients
of static and kinetic friction
between the block and the surface are 0.55 and 0.35,
respectively. The spring constant of
the spring is 100.0 N/m.
a) Determine the maximum compression of the spring
b) Determine the...

A 28 kg block on a horizontal surface is attached to a
horizontal spring of spring constant k = 4.8 kN/m. The block is
pulled to the right so that the spring is stretched 7.2 cm beyond
its relaxed length, and the block is then released from rest. The
frictional force between the sliding block and the surface has a
magnitude of 37 N. (a) What is the kinetic energy of the block when
it has moved 1.6 cm from...

Another block, another spring. This time around, the block (m =
1.18 kg) is compressing a spring with spring constant k = 273 N/m
by 36.3 cm. It is released from rest so it then slides along the
horizontal surface shown. This time, there is friction on the
horizontal surface, with a coefficient of friction between the
block and surface of μk = 0.11. In addition, there is a steady wind
blowing to the right, exerting a constant 6.7 N...

. A 50 g plastic cube is pressed against a spring, compressing
the spring by 10 cm. The spring constant is 25 N/m. The cube is 22
cm from the bottom of a 30° slope. Once the cube is released, to
what height does the cube slide? The coefficient of kinetic
friction on the flat surface is .20. There is no friction up the
ramp.

A 2.5-kg block is sliding along a rough horizontal surface and
collides with a horizontal spring whose spring constant is 320 N/m.
Unstretched, the spring is 20.0 cm long. The block causes the
spring to compress to a length of 12.5 cm as the block temporarily
comes to rest. The coefficient of kinetic friction between the
block and the horizontal surface is 0.25. a) How much work is done
by the spring as it brings the block to rest? b)...

. A block of mass 2.00 kg is attached to a horizontal spring
with a force constant of 500 N/m. The spring is stretched 5.00 cm
from its equilibrium position and released from rest. Use
conservation of mechanical energy to determine the speed of the
block as it returns to equilibrium
(a) if the surface is frictionless
(b) if the coefficient of kinetic friction between the block and
the surface is 0.350

A block of mass 0.25 kg is against a spring compressed at 0.20 m
with spring constant 50 N/m. When the spring is released, the block
moves along the frictionless surface until entering a region with
the coefficient of kinetic friction equal to 0.30 (when the block
enters the friction region it is no longer in contact with the
spring ). How far,L,into the region with friction does the block
slide before stopping?

A 193 g block is pressed against a spring of force constant 1.12
kN/m until the block compresses the spring 14.8 cm. The spring
rests at the bottom of a ramp inclined at 64.3o to the
horizontal.
A) Determine how far up the incline the block moves before it
stops if there is no friction between the block and the ramp.
B) How far up the incline does the block move before it stops if
the coefficient of kinetic friction...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 10 minutes ago

asked 14 minutes ago

asked 29 minutes ago

asked 41 minutes ago

asked 44 minutes ago

asked 58 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago