Question

A curve of radius 20 m is banked so that a 1000 kg car traveling at...

A curve of radius 20 m is banked so that a 1000 kg car traveling at 60 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . ? Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.2. Answer in units of m/s.

A ferris wheel rotates 2 times each minute and has a diameter of 17 m. The acceleration of gravity is 9.8 m/s 2 .What force does the seat exert on a 53 kg rider at the lowest point of the ride? Answer in units of N.

Homework Answers

Answer #1

And

Centripetal force = (tangential velocity)^2 ÷ radius
Centripetal acceleration = (tangential velocity)^2 ÷ radius

As the Ferris wheel rotates 1 time, the rider moves the distance equal to the circumference of the circle = (2 * ? * 8.5) meters.
In one minute the rider moves 4 * (2 * ? * 8.5) = 68 * ? meters

Tangential velocity = total distance (in meters) ÷ total time (in seconds)
Tangential velocity = 68 * ? meters ÷ 60 seconds = 1.13 * ? m/s
This is the velocity of a rider on the Ferris wheel.

Centripetal force = 53 * (1.13 * ?)^2 ÷ 8.5 =79.04 N
Weight = 53 * 9.8 = 519.4 N  
At the lowest point of the ride, the direction of the weight is away from center of the Ferris wheel.
Force = Weight + centripetal force
Force = 519.4+79.04 = 598.44 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A curve of radius 20 m is banked so that a 1100 kg car traveling at...
A curve of radius 20 m is banked so that a 1100 kg car traveling at 30 km/h can round it even if the road is so icy that the coefficient of static friction is approximately zero. The acceleration of gravity is 9.81 m/s 2 . Find the minimum speed at which a car can travel around this curve without skidding if the coefficient of static friction between the road and the tires is 0.3. Answer in units of m/s.
A curve of radius 30 m is banked so that a 950-kg car traveling at 25...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25 miles per hour can round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction between the snowy road...
A car rounds a 50 meter radius curve that is banked such that a car rounding...
A car rounds a 50 meter radius curve that is banked such that a car rounding it does not need friction at a speed of 12 m/s. What is the bank angle of the road? The coefficient of kinetic friction between the tires and the road is 0.5 and the coefficient of static friction between the tires and the road is 0.8. If the same road were flat (instead of banked), determine the maximum speed with which the coar could...
A 1000-kg car is traveling around a curve having a radius of 100 m that is...
A 1000-kg car is traveling around a curve having a radius of 100 m that is banked at an angle of 15.0°. If 30m/s is the maximum speed this car can make the curve without sliding, what is the coefficient of friction between the road and the tires?
A road with a radius of 75.0 m is banked so that a car can navigate...
A road with a radius of 75.0 m is banked so that a car can navigate the curve at a speed of 15.0 m/s without any friction. If the banking angle is reduced to zero when a car is going 20.0 m/s on this curve, what minimum coefficient of static friction is needed if the car is to navigate the curve without slipping?
A car merges onto the freeway on a banked curve. The car maintains a constant velocity...
A car merges onto the freeway on a banked curve. The car maintains a constant velocity 푣 while driving on the curve, which is banked at angle theta and has a radius of curvature R. The car has mass m and the coefficient of static friction between the car’s tires and the road is meu(s). What is the maximum and minimum speed that the car can go around the banked curve without slipping? Hint: The car tends to slip up...
A 1840-kg car travels on a banked, horizontal curve of diameter 250 m. Find the maximum...
A 1840-kg car travels on a banked, horizontal curve of diameter 250 m. Find the maximum safe speed if the coefficient of friction between the tires and the road is 0.75 and the banking angle is 5.0 degrees. Additionally, what net force does the car experience in this case?
A 1000 kg car rounds curve of radius 75 m banked at an angle of 15...
A 1000 kg car rounds curve of radius 75 m banked at an angle of 15 degree, if the car is traveling at 100 km/h, will a friction force be required? If so, how much and what direction?
A curve at a racetrack has a radius of 600 m and is banked at an...
A curve at a racetrack has a radius of 600 m and is banked at an angle of 7.0 degrees. On a rainy day, the coefficient of friction between the cars' tires and the track is 0.50. Part A. What is the maximum speed at which a car could go around this curve without slipping? Give answer as vmax= and m/s
If a car takes a banked curve at less than the ideal speed, friction is needed...
If a car takes a banked curve at less than the ideal speed, friction is needed to keep it from sliding toward the inside of the curve (a real problem on icy mountain roads). (a) Calculate the ideal speed to take a 105 m radius curve banked at 15°. Correct: Your answer is correct. m/s (b) What is the minimum coefficient of friction needed for a frightened driver to take the same curve at 30.0 km/h?