Question

A 76 g , 35-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its...

A 76 g , 35-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 15 g ball of clay traveling horizontally at 2.7 m/s hits and sticks to the very bottom tip of the rod.

To what maximum angle, measured from vertical, does the rod (with the attached ball of clay) rotate?

Express your answer to two significant figures and include the appropriate units.

Homework Answers

Answer #1

here,

mass of rod , m1 = 0.076 kg

l = 0.35 m

mass of ball , m2 = 0.015 kg

initial speed , u = 2.7 m/s

let the final angular speed be w

using conservation of angular momentum

m2 * u * l = ( m2 * l^2 + m1 * l^2 /3) * w

0.015 * 2.7 * 0.35 = ( 0.015 * 0.35^2 + 0.076 * 0.35^2 /3) * w

solving for w

w = 2.87 rad/s

let the maximum angle be theta

using conservation of energy

(m1 + m2) * g * l * ( 1 - cos(theta)) = 0.5 * I * w^2

(0.076 + 0.015) * 9.81 * ( 1 - cos(theta)) = 0.5 * ( 0.015 * 0.35^2 + 0.076 * 0.35^2 /3) * 2.87^2

solving for theta

theta = 12.2 degree

the maximum angle from the vertical is 12.2 degree

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 80 g , 37-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its...
A 80 g , 37-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 14 g ball of clay traveling horizontally at 2.1 m/s hits and sticks to the very bottom tip of the rod. Part A To what maximum angle, measured from vertical, does the rod (with the attached ball of clay) rotate?
A 78 g , 32-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its...
A 78 g , 32-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 12 g ball of clay traveling horizontally at 2.1 m/s hits and sticks to the very bottom tip of the rod. To what maximum angle, measured from vertical, does the rod (with the attached ball of clay) rotate?
A 77 g , 36-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its...
A 77 g , 36-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 15 g ball of clay traveling horizontally at 2.1 m/shits and sticks to the very bottom tip of the rod. To what maximum angle, measured from vertical, does the rod (with the attached ball of clay) rotate?
A 78 g , 31-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its...
A 78 g , 31-cm-long rod hangs vertically on a frictionless, horizontal axle passing through its center. A 10 g ball of clay traveling horizontally at 2.0 m/s hits and sticks to the very bottom tip of the rod. Part A To what maximum angle, measured from vertical, does the rod (with the attached ball of clay) rotate? Express your answer to two significant figures and include the appropriate units. Show and give the formula Show known/Given Draw Motion Diagram...
A rod with length L and mass M hangs vertically on a frictionless, horizontal axel passing...
A rod with length L and mass M hangs vertically on a frictionless, horizontal axel passing through its center. A ball of mass m traveling horizontally at speed v0 hits and sticks to the very bottom tip of the rod. To what maximum angle, measured from vertical, does the rod, with the attached ball, rotate? Answer in terms m, M, v0, L, and g.
A 54-cm-long, 500 g bar rotates in a horizontal plane on an axle that passes through...
A 54-cm-long, 500 g bar rotates in a horizontal plane on an axle that passes through the center of the bar. Compressed air is fed in through the axle, passes through a small hole down the length of the bar, and escapes as air jets from holes at the ends of the bar. The jets are perpendicular to the bar's axis. Starting from rest, the bar spins up to an angular velocity of 200 rpm at the end of 12...
A 3.00-kg rod that is 1.40 m long is free to rotate in a vertical plane...
A 3.00-kg rod that is 1.40 m long is free to rotate in a vertical plane about an axle that runs through the rod's center, is perpendicular to the rod's length, and runs parallel to the floor. A 1.00-kg block is attached to one end of the rod, and a 2.00-kg block is attached to the other end. At some instant, the rod makes an angle of 37.0 ? with the horizontal so that the blocks are in the positions...
A 10.0-cm side square loop is fashioned from a single 4.00-m long, 100-g wire. One side...
A 10.0-cm side square loop is fashioned from a single 4.00-m long, 100-g wire. One side of the loop is attached to a horizontal, frictionless axle. The loop is suspended in a region with a uniform 10.0-mT magnetic field oriented vertically. (a) What angle does the loop make with the vertical when it carries a current of 3.40 A? (b) What magnetic torque acts on the loop? Please don't just copy the other tutors, majority of their answers are wrong.
A 3.00-kg rod that is 2.60 m long is free to rotate in a vertical plane...
A 3.00-kg rod that is 2.60 m long is free to rotate in a vertical plane about an axle that runs through the rod's center, is perpendicular to the rod's length, and runs parallel to the floor. A 1.00-kg block is attached to one end of the rod, and a 2.00-kg block is attached to the other end. At some instant, the rod makes an angle of 31.0 ? with the horizontal so that the blocks are in the positions...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at...
21) A person carries a 25.0-N rock through the path shown in the figure, starting at point A and ending at point B. The total time from A to B is 1.50 min. How much work did gravity do on the rock between A and B? A) 625 J B) 20.0 J C) 275 J D) 75 J E) 0 J 22) A person carries a 2.00-N pebble through the path shown in the figure, starting at point A and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT