Question

A thin plastic spherical shell with radius 5 cm has a charge Q = 2 e...

A thin plastic spherical shell with radius 5 cm has a charge Q = 2 e (where e is the charge of a proton) distributed evenly over its surface. At the center of the hole is a point charge q = -2 e.

What would be the force on a point charge of 1.1 e displaced < 0, 2.9, 0 > cm from the point charge q?


< 0, -6.0e-25, 0 > N

< 0, 6.0e-25, 0 > N

< 0, -2.4e+13, 0 > N

< 0, -6.0e-29, 0 > N

< 0, -6.7e-35, 0 > N

Homework Answers

Answer #1

The charge on the spherical shell is on the surface, and we know electric field inside the shell due to charge on surface is zero.

For for any charge inside the shell, it will not experience any force from the charge on the surface,

Here there are teo charge inside the shell

One is at centre of shell

,The other is at 2.9cm along y axis in the shell

So in other ways the distance between the these two charges are 2.9cm.

So , F = kq1q2/r^2

F = 9×10^9 ×(-3)×(1.1)/(.029)^2

F= 2.354 ×10^13

F = 2.4×10^13

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin...
A thin spherical shell of radius R1 = 3.00 cm is concentric with another larger thin spherical shell of radius R2 = 5.00 cm. Both shells are made of insulating material. The smallest shell has a charge q1 = +6.00 nC distributed evenly on its surface, and the largest one has a charge q2 = -9.00 nC evenly distributed on its surface ficie. Consider the electric potential equal to zero at an in- finite of both shells. a) What is...
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What...
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What is the magnitude of the electric field it produces at the following places? (k = 1/4 0 = 9.0 × 109 N  m2/C2) (a) at 1.0 cm above the surface (b) at 7.0 cm from the center of the sphere
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa...
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa = 5.00×10-6 C. Concentric with it is another thin, metallic, spherical shell of radius b = 18.90 cm and charge qb = 5.00×10-6 C. Find the electric field at radial points r where r = 0.0 cm. Find the electric field at radial points r where r = 13.0 cm. Find the electric field at radial points r where r = 28.4 cm. Discuss...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr...
A thin spherical shell has a radius a and charge +Q that is distributed uniformly overr it. There is also a second spherical shell of radius b that is concentric with the first shell and has charge +Q2 uniformly distributed over it. b> a. Find the magnitude and direction of electric field in the regions (a) R<a (b)a<R<b (c)R>b (d) electric potential for the region R>b (e) electric potential for the region a<R<b (f)electric potential for the region R<a
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed...
A thin aluminum sphere of radius 25 cm has a charge of Q=150 nC uniformly distributed on its surface. a) Assuming that the center of the sphere is at r=0, find expressions for the electric field for all regions of interest (r<R, and R>r), and make a plot of the electric field strength as a function of r. b) Find expressions for the electric potential for all regions of interest, and plot the electric potential as a function of r....
A conducting spherical shell of inner radius and outer radius has a charge Q on it....
A conducting spherical shell of inner radius and outer radius has a charge Q on it. The flux through a concentric spherical surface of radius is . An additional charge, also Q, is then added to the sphere. What is the change in flux through a concentric spherical surface of radius when the additional charge is placed on the conducting shell?
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical shell with radius 7.00cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=?9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. Part A What is the electric potential due to the two shells at the following...
A thin spherical shell of radius 5.35 m has a total charge of 7.65 C distributed...
A thin spherical shell of radius 5.35 m has a total charge of 7.65 C distributed uniformly over its surface. Find the electric field 10.6 m from the center of the shell. The Coulomb constant is 8.98755
The Van de Graaff generator has a spherical thin conducting shell with a radius of 15....
The Van de Graaff generator has a spherical thin conducting shell with a radius of 15. cm and a surface charge density 2.1 x 10-3 μC/cm2 . a. Determine the total charge on the surface of the Van de Graaff [6.02 μC] b. Use Gauss's Law to determine the magnitude and direction of the electric field inside the dome at a distance 6. cm from the center. Sketch and label the electric field, Gaussian surface, etc. You must use Gauss's...
A thin-walled metal spherical shell of radius a = 8 m has a charge qa =...
A thin-walled metal spherical shell of radius a = 8 m has a charge qa = 23 C. Concentric with it is a thin-walled metal spherical shell of radius b = 7a and charge qb = 27 C. Find the electric field at points a distance r from the common center, where (a) r = 2.4 m, (b) r = 16 m, and (c) r = 84.0 m.