Question

In Young's double-slit interference experiment, it is found that
the second bright fringe is at the angle of 10.2.
If the separation between the double slits is
mm, find the wavelength (in m) of the light source. Express your
answer in scientific notation.

Answer #1

In a Young's double-slit experiment the wavelength of light used
is 493 nm (in vacuum), and the separation between the slits is 1.5
× 10-6 m. Determine the angle that locates
(a) the dark fringe for which m = 0,
(b) the bright fringe for which m = 1,
(c) the dark fringe for which m = 1, and
(d) the bright fringe for which m =
2.

In a Young's double-slit experiment the wavelength of light used
is 489 nm (in vacuum), and the separation between the slits is 2.4
× 10-6 m. Determine the angle that locates (a) the dark fringe for
which m = 0, (b) the bright fringe for which m = 1, (c) the dark
fringe for which m = 1, and (d) the bright fringe for which m =
2.

In a Young's double-slit experiment the wavelength of light used
is 472 nm (in vacuum), and the separation between the slits is 1.4
× 10-6 m. Determine the angle that locates (a) the dark fringe for
which m = 0, (b) the bright fringe for which m = 1, (c) the dark
fringe for which m = 1, and (d) the bright fringe for which m =
2.

A double slit experiment produces an interference pattern on a
screen 2.8 m away from the slits. Light of wavelength = 480 nm
falls on the slits from a distant source. The distance between
adjacent bright fringes is 5.8 mm.
a) find the distance between the two slits. Express your answer
using 3 significant figures.
b) determine the distance to the 6th order dark fringe from the
central fringe. Express your answer using three significant
figures.

In a double-slit interference experiment, the slit separation is
2.29 μm, the light wavelength is 532 nm, and the separation between
the slits and the screen is 4.42 m. (a) What is
the angle between the center and the third side bright fringe? If
we decrease the light frequency to 94.8% of its initial value,
(b) does the third side bright fringe move along
the screen toward or away from the pattern's center and
(c) how far does it move?

A double-slit experiment produces an interference pattern on a
screen 2.8 m m away from slits. Light of wavelength λ= 520 nm n m
falls on the slits from a distant source. The distance between
adjacent bright fringes is 7.2 mm m m . Part A Find the distance
between the two slits. Express your answer using three significant
figures. Part B Determine the distance to the 5th order dark fringe
from the central fringe. Express your answer using...

In a Young's double-slit experiment, a set of parallel slits
with a separation of 0.104 mm is illuminated by
light having a wavelength of 566 nm and the
interference pattern observed on a screen 3.50 m
from the slits.
(a) What is the difference in path lengths from the two slits to
the location of a fifth order bright fringe on the
screen?
_________________________ μm
(b) What is the difference in path lengths from the two slits to
the location...

A double-slit experiment produces an interference pattern on a
screen 2.8 m away from slits. Light of wavelength λ= 460 nm falls
on the slits from a distant source. The distance between adjacent
bright fringes is 6.2 mm.
A) Find the distance between the two slits
B) Determine the distance to the 6th order dark fringe from the
central fringe

In a Young's double-slit experiment, light of wavelength
? is sent through the slits. The intensity I at
angle ?0 from the central bright fringe is
lower than the maximum intensity Imax on the
screen. Find an expression for the spacing between the slits in
terms of ?, ?0, I, and
Imax.
d=______________________-

A double slit interference pattern is created by two narrow slit
spaced 0.025 mm apart on a screen 2 m away from the slits.
a. If the seventh bright fringe on the detector is 10 cm away
from the central fringe, what is the wavelength of light (in nm)
used in this experiment?
b. What is the angle of the diffraction order?

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 2 minutes ago

asked 3 minutes ago

asked 9 minutes ago

asked 11 minutes ago

asked 32 minutes ago

asked 37 minutes ago

asked 41 minutes ago

asked 46 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago