Question

A 12.0-g piece of clay is launched horizontally at a 105-g wooden block that is initially...

A 12.0-g piece of clay is launched horizontally at a 105-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 45 N/m. The piece of clay sticks to the side of the block. If the clay-block system compresses the spring by a maximum of 16.0 cm, what was the speed of the piece of clay at impact with the block?

Homework Answers

Answer #1

here,

mass of clay, m = 0.012 kg

mass of woooden block , mw = 0.105 kg

spring constant , k = 45 N/m

compression in the spring , x = 0.16m

let the initial velocity of the bullet be u

using conservation of momentum for block and bullet

m * u = ( M + m ) * v

v = u *m / ( M + m)

and for the spring

0.5 * k * x^2 = 0.5 * (M + m) * v^2

0.5 * k * x^2 = 0.5 * (M + m) * (u *m / ( M + m))^2

k * x^2 = ((u *m )^2/ ( M + m))

45 * 0.16^2 = ((u *0.012 )^2/ ( 0.105 + 0.012))

u = 30.6 m/s

the initial speed of the clay before impact is 30.6 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest...
A 12.0-g bullet is fired horizontally into a 116-g wooden block that is initially at rest on a frictionless horizontal surface and connected to a spring having spring constant 151 N/m. The bullet becomes embedded in the block. If the bullet-block system compresses the spring by a maximum of 81.0 cm, what was the speed of the bullet at impact with the block?
A 11.0 g wad of sticky clay is hurled horizontally at a 120 g wooden block...
A 11.0 g wad of sticky clay is hurled horizontally at a 120 g wooden block initially at rest on a horizontal surface. The clay sticks to the block. After impact, the block slides 7.50 m before coming to rest. If the coefficient of friction between block and surface is 0.650, what was the speed of the clay immediately before impact? m/s
ASAP Please and Thank you A 105 g wooden block is initially at rest on a...
ASAP Please and Thank you A 105 g wooden block is initially at rest on a rough horizontal surface when a 12.4 g bullet is fired horizontally into (but does not go through) it. After the impact, the block–bullet combination slides 6.5 m before coming to rest. If the coefficient of kinetic friction between block and surface is 0.750, determine the speed of the bullet (in m/s) immediately before impact. __m/s
A wooden block is at rest on a frictionless horizontal surface and is connected to a...
A wooden block is at rest on a frictionless horizontal surface and is connected to a spring (k =150 N/m). The mass of the wooden block is 0.10 kg. A bullet (mass 0.012 kg) and velocity 270 m/s is fired horizontally into the wooden block. After collision the bullet stays in the block. (a) Find the speed of the bullet-block system right after the collision. (b) If the bullet-block system compresses the spring by a maximum of d. Find d
A 92.0 g wooden block is initially at rest on a rough horizontal surface when a...
A 92.0 g wooden block is initially at rest on a rough horizontal surface when a 11.0 g bullet is fired horizontally into (but does not go through) it. After the impact, the block–bullet combination slides 6.5 m before coming to rest. If the coefficient of kinetic friction between block and surface is 0.750, determine the speed of the bullet (in m/s) immediately before impact.
A 172 g block is launched by compressing a spring of constant k=200N/m a distance of...
A 172 g block is launched by compressing a spring of constant k=200N/m a distance of 15 cm. The spring is mounted horizontally, and the surface directly under it is frictionless. But beyond the equilibrium position of the spring end, the surface has coefficient of friction μ=0.27. This frictional surface extends 85 cm, followed by a frictionless curved rise, as shown in the figure After launch, where does the block finally come to rest? Measure from the left end of...
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on...
A 12.0g bullet is fired horizontally into a 650g block that is initially at rest on a frictionless horizontal surface. The initial velocity of the bullet is 450m/s. After the bullet is embedded into the block, the bullet-block system slides along the frictionless surface into a spring having spring constant k=470N/m a. What is the speed of the block after the bullet once it’s stuck in the block b. What was the work done on the bullet during the collision...
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one...
m1 = 2.2 kg block slides on a frictionless horizontal surface and is connected on one side to a spring (k = 45 N/m) as shown in the figure above. The other side is connected to the block m2 = 4 kg that hangs vertically. The system starts from rest with the spring unextended. a) What is the maximum extension of the spring? m a) What is the speed of block m2 when the extension is 45 cm?
Question 1: A ball of clay (m= 20 g) is thrown horizontally at a block of...
Question 1: A ball of clay (m= 20 g) is thrown horizontally at a block of wood (m=1.0 kg) that is sitting at rest on a frictionless surface. The ball of clay has a speed of 30 m/s. When it hits the block, it sticks to it. a) (1 point) What type of collision is this? b) (3 points) What is the speed of the block and the clay right after the collision? c) (2 points) Calculate the impulse (change...
A 0.0392-kg bullet is fired horizontally into a 2.04-kg wooden block attached to one end of...
A 0.0392-kg bullet is fired horizontally into a 2.04-kg wooden block attached to one end of a massless, horizontal spring (k = 838 N/m). The other end of the spring is fixed in place, and the spring is unstrained initially. The block rests on a horizontal, frictionless surface. The bullet strikes the block perpendicularly and quickly comes to a halt within it. As a result of this completely inelastic collision, the spring is compressed along its axis and causes the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT