A 0.366 kg metal cylinder is placed inside the top of a plastic tube, the lower end of which is sealed off by an adjustable plunger. The cylinder comes to rest some distance above the plunger. The plastic tube has an inner radius of 5.88 mm and is frictionless. Neither the plunger nor the metal cylinder allow any air to flow around them. If the plunger is suddenly pushed upwards, increasing the pressure between the plunger and the metal cylinder by a factor of 2.79 , what is the initial acceleration a of the metal cylinder? Assume the pressure outside of the tube is 1.00 atm and that the top of the tube is open to the air.
Answer in m/s2
initial pressure in chamber
p = 1atm + mg/A = 1.01 x 105Pa + 0.366kg x 9.8m/s² / [π(0.00588m)²]= 1.34 x 105Pa
final pressure p' = 2.79 x p = 2.79 x1.34 x 105 Pa = 3.74 x 105 Pa
for an increase of pressure Δp = p' – p =2.4 x 105Pa
which translates to an increase of force
F = Δp x A = 2.4 x 105Pa x π(0.00588m)² = 26.07 N
instantaneous acceleration a = 26.07 N/ 0.366kg = 71.23 m/s²
Hope this will help you. Thanks. Please give me a like or comment if there is any doubt.
Get Answers For Free
Most questions answered within 1 hours.