Question

A 6.32-kg object passes through the origin at time t = 0 such that its x...

A 6.32-kg object passes through the origin at time t = 0 such that its x component of velocity is 4.85 m/s and its ycomponent of velocity is -3.12 m/s.

(a) What is the kinetic energy of the object at this time?
J

(b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval?

magnitude N
direction ° measured from the +x axis


(c) What is the speed of the particle at t = 2.00 s?
m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 5.97-kg object passes through the origin at time t = 0 such that its x...
A 5.97-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.40 m/s and its y component of velocity is -3.24 m/s. (a) What is the kinetic energy of the object at this time?   (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude direction °...
A 5.32-kg object passes through the origin at time t = 0 such that its x...
A 5.32-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.40 m/s and its y component of velocity is −2.94 m/s. (a) What is the kinetic energy of the object at this time?   J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude       N...
A 6.22-kg object passes through the origin at time t = 0 such that its x...
A 6.22-kg object passes through the origin at time t = 0 such that its x component of velocity is 5.10 m/s and its ycomponent of velocity is -3.27 m/s. (a) What is the kinetic energy of the object at this time? J (b) At a later time t = 2.00 s, the particle is located at x = 8.50 m and y = 5.00 m. What constant force acted on the object during this time interval? magnitude N direction
A particle moves in the xy plane, starting from the origin at t=0 with an initial...
A particle moves in the xy plane, starting from the origin at t=0 with an initial velocity having an x-component of 6 m/s and y component of 5 m/s. The particle experiences an acceleration in the x-direction, given by ax=4t m/s2. Determine the acceleration vector at any later time. Determine the total velocity vector at any later time Calculate the velocity and speed of the particle at t=5.0 s, and the angle the velocity vector makes with the x-axis. Determine...
An object is initially at rest at the origin at time t=0, when a force in...
An object is initially at rest at the origin at time t=0, when a force in Newtons acts on the object in 1 dimension along the x axis of F(t)=25.0t2-2.0t3 where t is time in seconds. What is the momentum of the object at time t = 12.5 seconds?
A 2.30-kg object is moving along the x-axis at 1.50 m/s. As it passes the origin,...
A 2.30-kg object is moving along the x-axis at 1.50 m/s. As it passes the origin, two forces F→1 and F→2 are applied, both in the y-direction (plus or minus). The forces are applied for 2.70 s, after which the object is at x = 4.05 mm, y = 11.4 mm. If F→1=13.0 j^N, what's F→2?
An object in simple harmonic motion is oscillating about the origin on the x-axis. At time...
An object in simple harmonic motion is oscillating about the origin on the x-axis. At time t = 0 It is located at x = 5 cm, and is moving to the left. If its maximum oscillation amplitude A is 10 cm, what is the value of the phase constant ϕ0?
At the instant the displacement of a 2.00 kg object relative to the origin is =...
At the instant the displacement of a 2.00 kg object relative to the origin is = (2.00 m) + (4.00 m) - (3.00 m) , its velocity is = - (1.70 m/s) + (9.57 m/s) + (2.99 m/s) and it is subject to a force = (5.04 N) - (9.13 N) + (7.38 N) . Find the acceleration of the object ((a), (b) and (c) for , and components respectively), the angular momentum of the object about the origin ((d),...
At time t = 4 sec, a particle of mass M = 4.5 kg is at...
At time t = 4 sec, a particle of mass M = 4.5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1)What is the x component of the particle's angular momentum about the origin? 2)What is the y component of the particle's angular momentum about the origin? 3)What is the z component of the particle's angular momentum about the origin? 4)Now an identical particle is placed at (x,y,z) = (-4,-4,-6) m, with velocity (-2,-1,2)...
At time t = 11.5 sec, a particle of mass M = 5 kg is at...
At time t = 11.5 sec, a particle of mass M = 5 kg is at the position (x,y,z) = (4,4,6) m and has velocity (2,1,-2) m/s. 1) What is the x component of the particle's angular momentum about the origin? 2) What is the y component of the particle's angular momentum about the origin? 3) What is the z component of the particle's angular momentum about the origin? 4) Now an identical particle is placed at (x,y,z) = (-4,-4,-6)...