Question

Suppose that a neutron star has a radius of 14 km and a temperature of 1,000,000...

Suppose that a neutron star has a radius of 14 km and a temperature of 1,000,000 K. How luminous is it?

Homework Answers

Answer #1

Answer-The luminosity of a star is given by the equation

  Where L is the luminosity in Watts, R is the radius in meters, S is the Stefan-Boltzmann constant
(5.67 x 10-8 Wm-2K-4), and T is the star's surface temperature in Kelvin. Given R=14KM=14000M Tem=1*106

so L=4x 3.14x 14000x 14000x 5.67x 10-8x (1x 106)^4

L=13958.17x 10^22 watts.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In an X-ray burster, the surface of a neutron star 10 km in radius is heated...
In an X-ray burster, the surface of a neutron star 10 km in radius is heated to a temperature of 3 × 107 K. (a) Determine the wavelength of maximum emission of the heated surface, assuming it radiates as a blackbody. In what part of the electromagnetic spectrum does this lie? (b) Find the luminosity of the heated neutron star. Give your answer in watts and in terms of the luminosity of the Sun. How does this compare with the...
A star has a temperature of 5105 K and a radius of 4.10×106 km . What...
A star has a temperature of 5105 K and a radius of 4.10×106 km . What is the radius of this star in units of the solar radius, ?sun ? ?sun=6.9551×105 km. radius: ?sun What is the temperature of this star in units of the solar temperature, ?sun ? ?sun=5777 K. temperature: ?sun Given that the luminosity of a star is given as a function of its radius ? and temperature ? by the equation ?=4??2??4 what is the luminosity...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun,...
Consider a neutron star with a mass equal to 0.9 times the mass of the Sun, a radius of 15 km, and a rotation period of 1.3 s. What is the speed of a point on the equator of this neutron star? What is gg at the surface of this neutron star? A stationary 1.0 kg mass has a weight of 9.8 N on Earth. What would be its weight on the neutron star? How many revolutions per second are...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely...
Neutron Star Physics Under some circumstances, an ordinary star can undergo gravitational collapse into an extremely dense object made mostly of neutrons. This type of star is called a "neutron star". A neutron star has a mass density roughly 1014 times larger than that of ordinary solid matter. Suppose we represent an ordinary star as a uniform solid rigid sphere, both before and after the collapse. The original star's initial radius is 7.0 x 105 km (comparable to the size...
If both a neutron star and a white dwarf have a total mass of 1M®. If...
If both a neutron star and a white dwarf have a total mass of 1M®. If the radius of the white dwarf is 6 x 106 m and the neutron star has a radius of 8 km. What is the density of the neutron star? Compare the surface gravity of both stars? Assuming the neutron star is entirely made up of neutrons and the interparticle separation of a gas of density n is l ͌  n -1/3. How far apart are...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is...
Astronomers detect stars that are rotating extremely rapidly, known as neutron stars. A neutron star is believed to form from the inner core of a larder star that collapsed, under its own gravitation, to a star of very small radius and very high density. Before collapse, suppose the ore of such a star is the size of our Sun (R = 7105km)with mass 2.0 times as great as the Sun, and is rotating at a frequency of 1.0 revolution every...
A neutron star consists of neutrons at approximately nuclear density. Estimate, for a 10-km-diameter neutron star...
A neutron star consists of neutrons at approximately nuclear density. Estimate, for a 10-km-diameter neutron star its mass number, its mass, the acceleration of gravity at its surface. Estimate its mass number. Estimate its mass. Estimate the acceleration of gravity at its surface.
Calculate the escape velocity (Unit 18) from a white dwarf and a neutron star. Assume that...
Calculate the escape velocity (Unit 18) from a white dwarf and a neutron star. Assume that each has 1.7 M⊙ . Let the white dwarf's radius be 2.71 × 104 km and the neutron star's radius be 15 km. The escape velocity from a white dwarf is _______ × 10^6 m/s. The escape velocity from a neutron star is _______× 10^6 m/s.
10. [3pt] A red giant star has a temperature of 4400 K and a luminosity of...
10. [3pt] A red giant star has a temperature of 4400 K and a luminosity of 11700 L⊙. How many times bigger is this star than the Sun? 11. [3pt] Match each of the characteristics listed below the appropriate object. Select M Main sequence stars, R Red gi- ants, or W White dwarfs A) Found in the upper-right of the HR diagram. B) Very hot but very dim. C) The hottest and most luminous stars. D) The majority of stars...
A typical neutron star may have a mass equal to that of the Sun but a...
A typical neutron star may have a mass equal to that of the Sun but a radius of only 12 km. (a) What is the gravitational acceleration at the surface of such a star? (b) How fast would an object be moving if it fell from rest through a distance of 1.5 m on such a star? (Assume the star does not rotate.)
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT