Question

A spring with spring constant k = 45 N/m and unstretched length of L0 = 1...

A spring with spring constant k = 45 N/m and unstretched length of L0 = 1 is attached to the ceiling. A block of mass m = 2.5 kg is hung gently on the end of the spring.

1) How far does the spring stretch? .545 m

2) Now the block is pulled down until the total amount the spring is stretched is twice the amount found in the above question. The block is then pushed upward with an initial speed vi = 2 m/sec. What is the maximum speed of the block?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1) An unstretched spring with spring constant 36 N cm is suspended from the ceiling. A...
1) An unstretched spring with spring constant 36 N cm is suspended from the ceiling. A 3.0 kg mass is attached to the spring and let fall. How far does it stretch the spring? (a)0.4 cm, (b) 1.6 cm, (c) 4.5 cm , (d)9.3 cm. 2) What are the fundamental units of G, the Gravitational constant? (a) m2 Nkg2 (b) m2N kg2 (c) kg2N m2 (d) kg2N m2 3) How far can a runner running at 8.2 m s run...
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position....
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position. (a.) What is the spring constant? = 245 N/m (b.) The block is removed, and a 0.500 kg mass is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation? =.284 sec (c.) Write the unique equation of motion y(t) for the motion of the mass in part (b), assuming the mass was initially pulled...
A spring with an unstrained length of 0.075 m and a spring constant of 2.2 N/m...
A spring with an unstrained length of 0.075 m and a spring constant of 2.2 N/m hangs vertically downward from the ceiling. A uniform electric field directed upward fills the region containing the spring. A sphere with a mass of 5.9 × 10-3 kg and a net charge of +7.2 μC is attached to the lower end of the spring. The spring is released slowly, until it reaches equilibrium. The equilibrium length of the spring is 0.063 m. What is...
A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of...
A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of the spring is attached to the top of a doorframe and a weight with mass 8.00 kg is hung from the other end. The final length of the spring is 43.5 cm. (a) Find its spring constant (in N/m). N/m (b) The weight and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a...
A spring 1.7 m long with force constant 525 N/m is hung from the ceiling of...
A spring 1.7 m long with force constant 525 N/m is hung from the ceiling of an elevator, and a block of mass 15 kg is attached to the bottom of the spring. (a) By how much is the spring stretched when the block is slowly lowered to its equilibrium point? (b) Referring to your answer in Part (a), is the block below or above its equilibrium position? (c) If the elevator subsequently accelerates upward at 2.00 m/s2, what is...
Suppose a spring with a natural length of 2 m has spring constant 4 N/m. (a)...
Suppose a spring with a natural length of 2 m has spring constant 4 N/m. (a) Find the amount of work (in J) required to stretch the spring from 3 m to 6 m. (b) If we apply a 12 Newton force to the spring, how far past its natural length (in m) can we stretch it?
A block of mass m = 0.53 kg attached to a spring with force constant 119...
A block of mass m = 0.53 kg attached to a spring with force constant 119 N/m is free to move on a frictionless, horizontal surface as in the figure below. The block is released from rest after the spring is stretched a distance A = 0.13 m. (Indicate the direction with the sign of your answer. Assume that the positive direction is to the right.) The left end of a horizontal spring is attached to a vertical wall, and...
A horizontal spring attached to a wall has a force constant of k = 820 N/m....
A horizontal spring attached to a wall has a force constant of k = 820 N/m. A block of mass m = 1.20 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below (a) The block is pulled to a position xi = 5.40 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 5.40 cm from equilibrium. (b) Find the speed of the block...
A horizontal spring attached to a wall has a force constant of k = 720 N/m....
A horizontal spring attached to a wall has a force constant of k = 720 N/m. A block of mass m = 1.90 kg is attached to the spring and rests on a frictionless, horizontal surface as in the figure below. (a) The block is pulled to a position xi = 6.20 cm from equilibrium and released. Find the potential energy stored in the spring when the block is 6.20 cm from equilibrium. (b) Find the speed of the block...
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m....
Consider a block attached to one end of an ideal spring with spring constant k=10 N/m. The other end of the spring is fixed to the ceiling. The block is moving vertically with simple harmonic oscillations. During the oscillations, the speed of the block reaches a maximum value of 10 m/s and the maximum acceleration of the block is 50 m/s2. What is the mass of the block? Express your answer in units of kg, but enter only the numeric...