Question

9. Water at a pressure of 4.50 atm at street level flows into an office building...

9. Water at a pressure of 4.50 atm at street level flows into an office building at a speed of 0.80 m/s through a pipe 6.00 cm in diameter. The pipes taper down to 3.00 cm in diameter by the top floor, 27.0 m above. Calculate the water pressure in such a pipe on the top floor.

Homework Answers

Answer #1


from equation of continuity


volume flow rate remains same in a fluid flow

A1*v1 = A2*v2

A1 = pI*r1^2


A2 = pi*r2^2


r1 = radius of larger pipe = 6/2 = 3 cm = 0.03 m


r2 = radius of smaller pipe = 3/2 = 1.5 cm = 0.015 m

v1 = 0.8 m/s

v2 = ?


pi*0.03^2*0.8 = pi*0.015^2*v2

v2 = 3.2 m/s


==================


from Bernoullis principle

P1 + (1/2)*rho*v1^2 + rho*g*h1 = P2 + (1/2)*rho*v2^2 + rho*g*h2

P2 = P1 + (1/2)*rho*(v1^2 - v2^2) + rho*g*(h1 - h2)

h1 = 0

h2 = 27m


P1 = 4.5 atm = 4.5*10^5 Pa


P2 = 4.5*10^5 + (1/2)*1000*(0.8^2-3.2^2) + 1000*9.8*(0-27)

P2 = 1.806*10^5 Pa <<<<<----------ANSWER

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Water at a pressure of 3.30 atm at street level flows into an office building at...
Water at a pressure of 3.30 atm at street level flows into an office building at a speed of 0.80 m/s through a pipe 6.40 cm in diameter. The pipes taper down to 2.80 cm in diameter by the top floor, 30.0 m above. Calculate the water pressure in such a pipe on the top floor.
Water at a pressure of 3.50 atm at street level flows into an office building at...
Water at a pressure of 3.50 atm at street level flows into an office building at a speed of 0.55 m/s through a pipe 6.80 cm in diameter. The pipes taper down to 3.00 cm in diameter by the top floor, 26.0 m above. Calculate the water pressure in such a pipe on the top floor.
Water at a pressure of 4.00 atm at street level flows into an office building at...
Water at a pressure of 4.00 atm at street level flows into an office building at a speed of 0.90 m/s through a pipe 3.60 cm in diameter. The pipes taper down to 1.60 cm in diameter by the top floor, 22.0 m above. Calculate the water pressure in such a pipe on the top floor.
Water at a pressure of 3.8 atm at street level flows into an office building at...
Water at a pressure of 3.8 atm at street level flows into an office building at a speed of 0.60 m/s through a pipe 5.6 cm in diameter. The pipes taper down to 2.6 cm in diameter by the top floor, 20m above (Fig. 10-49). Calculate the flow velocity and the pressure in such a pipe on the top floor. Ignore viscosity. Pressures are gauge pressures. flow velocity___ m/s pressure____ atm
Water at a gauge pressure of P = 3.4 atm at street level flows into an...
Water at a gauge pressure of P = 3.4 atm at street level flows into an office building at a speed of 0.86 m/s through a pipe 5.8 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Calculate the flow velocity in the pipe on the top floor. Calculate the gauge pressure in the pipe on the top floor.
Water at a gauge pressure of P = 3.4 atm at street level flows into an...
Water at a gauge pressure of P = 3.4 atm at street level flows into an office building at a speed of 0.64 m/s through a pipe 5.4 cm in diameter. The pipe tapers down to 2.8 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Calculate the flow velocity in the pipe on the top floor. Calculate the gauge pressure in the pipe on the top floor.
Water at a gauge pressure of P = 3.2 atm at street level flows into an...
Water at a gauge pressure of P = 3.2 atm at street level flows into an office building at a speed of 0.90 m/s through a pipe 5.2 cm in diameter. The pipe tapers down to 2.6 cm in diameter by the top floor, 16 m above (Figure 1). Assume no branch pipes and ignore viscosity. Part A: Calculate the flow velocity in the pipe on the top floor. Express your answer to two significant figures and include the appropriate...
Water at a gauge pressure of PPP = 3.2 atmatm at street level flows into an...
Water at a gauge pressure of PPP = 3.2 atmatm at street level flows into an office building at a speed of 0.64 m/sm/s through a pipe 5.2 cmcm in diameter. The pipe tapers down to 2.4 cmcm in diameter by the top floor, 16 mm above (Figure 1). Assume no branch pipes and ignore viscosity. a) Calculate the flow velocity in the pipe on the top floor. b) Calculate the gauge pressure in the pipe on the top floor.
Water at a gauge pressure of PPP = 3.6 atmatm at street level flows into an...
Water at a gauge pressure of PPP = 3.6 atmatm at street level flows into an office building at a speed of 0.96 m/sm/s through a pipe 5.6 cmcm in diameter. The pipe tapers down to 2.8 cmcm in diameter by the top floor, 16 mm above (Figure 1), where the faucet has been left open. Assume no branch pipes and ignore viscosity. a.Calculate the flow velocity. b.Calculate the gauge pressure in the pipe on the top floor.
1. An air-plane has an effective wing surface area of 12.0 m² that is generating the...
1. An air-plane has an effective wing surface area of 12.0 m² that is generating the lift force. In level flight the air speed over the top of the wings is 58.5 m/s, while the air speed beneath the wings is 45.5 m/s. What is the weight of the plane?(The density of air is 1.29 kg/m³) (in N) 2. Water at a pressure of 3.60 atm at street level flows into an office building at a speed of 0.50 m/s...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT