Question

A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser...

A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.3 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the particle.

Homework Answers

Answer #1

Given,

q = 2.4 x 10^-8 C ; I = 2.3 x 10^3 W/m^2

a)We know that electric field is related to intensity as:

I = c e0 E^2

E = sqrt (I/c e0)

E = sqrt (2.3 x 10^3/(3 x 10^8 x 8.85 x 10^-12)) = 930.75 N/C

E = 930.75 N/C

F = qE

Fe = 2.4 x 10^-8 x 930.75 = 2.23 x 10^-5 N

Hence, Fe = 2.23 x 10^-5 N

b)we know that

c = E/B => B = E/c

B = 930.75/(3 x 10^8) = 3.103 x 10^-6 T

B = 3.103 x 10^-6 T

Fm = q v B

since charge is stationary, v = 0

Fm = 0

c)v = 3.7 x 10^4 m/s

the electric force is

Fe = q E

Fe = 2.4 x 10^-8 x 930.75 = 2.23 x 10^-5 N

Hence, Fe = 2.23 x 10^-5 N

d)Fm = q v B

Fm = 2.4 x 10^-8 x 3.7 x 10^4 x 3.103 x 10^-6 = 2.76 x 10^-9 N

Hence, Fm = 2.76 x 10^-9 N

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.4 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.8 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.2 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.2 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.5 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.5 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.5 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.6 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser...
A stationary particle of charge q = 2.7 × 10-8 C is placed in a laser beam (an electromagnetic wave) whose intensity is 2.8 × 103 W/m2. Determine the maximum magnitude of the (a) electric and (b) magnetic forces exerted on the charge. If the charge is moving at a speed of 3.7 × 104 m/s perpendicular to the magnetic field of the electromagnetic wave, find the maximum magnitudes of the (c) electric and (d) magnetic forces exerted on the...
A particle with a charge of −1.24E-8 C is moving with instantaneous velocity v⃗  = (4.19E4 m/s)(i)...
A particle with a charge of −1.24E-8 C is moving with instantaneous velocity v⃗  = (4.19E4 m/s)(i) + (−3.85E4 m/s )(j). What is the force exerted on this particle by a magnetic field B= (1.50 T ) (i)? Forces in x, y, and z. What is the force exerted on this particle by a magnetic field B= (1.50 T ) (k)? Forces in x, y, and z. Please show ALL work.
A. Lunar astronauts placed a reflector on the Moon’s surface, off which a laser beam is...
A. Lunar astronauts placed a reflector on the Moon’s surface, off which a laser beam is periodically reflected. The distance to the Moon is calculated from the round-trip time. To what accuracy in centimeters can the distance to the Moon be determined, if this time can be measured to 0.11 ns? B. Lasers can be constructed that produce an extremely high intensity electromagnetic wave for a brief time—called pulsed lasers. They are used to ignite nuclear fusion, for example. Such...
A particle has a charge of q = +5.6 μC and is located at the origin....
A particle has a charge of q = +5.6 μC and is located at the origin. As the drawing shows, an electric field of Ex = +213 N/C exists along the +x axis. A magnetic field also exists, and its x and y components are Bx = +1.0 T and By = +1.6 T. Calculate the force (magnitude and direction) exerted on the particle by each of the three fields when it is (a) stationary, (b) moving along the +x...
A particle with positive charge q = 2.56 10-18 C moves with a velocity v with...
A particle with positive charge q = 2.56 10-18 C moves with a velocity v with arrow = (3î + 5? ? k) m/s through a region where both a uniform magnetic field and a uniform electric field exist. (a) Calculate the total force on the moving particle, taking B with arrow = (3î + 5? + k) T and E with arrow = (2î ? ? ? 5k) V/m. Fx = N Fy = N Fz = N (b)...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT