Question

In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines...

In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the first-order bright blue fringes lie at the outer edges of a screen that is located 0.500 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much and in which direction (toward or away from the slits) should the screen be moved so that the centers of the first-order bright orange fringes will just appear on the screen? It may be assumed that theta is small, so that sin(theta)=tan(theta).

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines...
In Young's experiment a mixture of orange light (611 nm) and blue light (471 nm) shines on the double slit. The centers of the first-order bright blue fringes lie at the outer edges of a screen that is located 0.720 m away from the slits. However, the first-order bright orange fringes fall off the screen. By how much and in which direction (toward or away from the slits) should the screen be moved, so that the centers of the first-order...
Blue light (λ = 450 nm) is used in a double slit experiment with the slits...
Blue light (λ = 450 nm) is used in a double slit experiment with the slits separated by d = 2.10 × 10^-4 m. The distance between the third order bright fringe and the central bright fringe is 1.93 × 10^-2 m. (a) (3 pts.) Determine the distance between the double slit and the screen. (b) (3 pts.) Calculate the width of the central bright fringe, i.e. the separation of the two zeroth order dark fringes. (c) (3 pts.) The...
In Young’s Double Slit Experiment, light of wavelength 550 nm illuminates two slits which are separated...
In Young’s Double Slit Experiment, light of wavelength 550 nm illuminates two slits which are separated by 0.500 mm. The separation between adjacent bright fringes on a screen 3.00 m from the slits is?
light of wavelength 400 nm shines through a diffracting rating making fringes on a screen 60...
light of wavelength 400 nm shines through a diffracting rating making fringes on a screen 60 cm from the grating. a first order bright fringe is obersved on that screen 30 cm from the central maximum. how far from the central max would a first order bright fringe fall on that screen from light of wavelength of 800 nm?
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2...
A light source shines light consisting of two wavelengths, λ1 = 540 nm (green) and λ2 = 450 nm (blue), on two slits separated by 0.170 mm. The two overlapping interference patterns, one from each wavelength, are observed on a screen 1.31 m from the slits. What is the minimum distance (in cm) from the center of the screen to a point where a bright fringe of the green light coincides with a bright fringe of the blue light? cm
Blue light (λ = 450 nm) is used in a double slit experiment. The light passes...
Blue light (λ = 450 nm) is used in a double slit experiment. The light passes through a diffraction grating with 1250 lines per centimeter, and the light is projected onto a screen, which is 1.75 m from the slits. What is the distance from the central bright spot to the third order maximum? What is the distance from the central bright spot to the second order minimum?
Consider a source of light with wavelength λ = 490 nm that shines on two identical...
Consider a source of light with wavelength λ = 490 nm that shines on two identical narrow slits. The slits are separated by a distance a = 30 μm. An interference pattern is observed on a screen located a distance L away from the slits. On the screen, the location of the second dark spot to the left of the central bright spot is found to be y = 1.2 cm from the central bright spot. Let this particular position...
You shine blue light (400 nm) and red light (700 nm) onto a Young’s double slit...
You shine blue light (400 nm) and red light (700 nm) onto a Young’s double slit apparatus with a slit separation distance of 6.00 μm. In order, what are the colors of the first five bright fringes from the central bright spot?
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100...
A double-slit experiment uses coherent light of wavelength 633 nm with a slit separation of 0.100 mm and a screen placed 2.0 m away. (a) How wide on the screen is the central bright fringe? (b) What is the distance on the screen between first-order and second-order bright fringes? (c) What is the angular separation (in radians) between the central maximum and the first-order maximum?   
A 600 nm laser shines through a double slit in which the two slits are 0.8...
A 600 nm laser shines through a double slit in which the two slits are 0.8 mm apart, and each slit is 0.1 mm wide. Sketch what the pattern would look like on a screen 3 m away and indicate the central maximum. How many bright spots lie between the first single-slit minimums on either side? How far away is that first single-slit minimum from the center of the pattern? (you may assume the small angle approximations)