Question

Two carts are rolling to the right along the same level track. Cart 1 (m1 = 3.81 kg) is in the rear, rolling at a speed of 6.25 m/s and catching up to cart 2, rolling at 3.07 m/s.

Round final results to 3 digits.

a) Cart 1 of course overtakes and collides with cart 2. Velcro pads on the carts make them stick together during the collision, after which they both continue rolling right, but at a speed of 4.40 m/s. What is cart 2's mass?

b) A bit later, the joined carts suffer a head-on collision with a third cart (m3 = 6.54 kg), rolling left at 2.87 m/s. This collision knocks carts 1 and 2 apart: just afterwards, cart 1 is rolling left at 4.95 m/s, but cart 2 is still rolling right, now at 3.14 m/s.

c) Without any calculations, what can we predict about the magnitude and direction of cart 3's velocity, compared to cart 2, just after the collision? Explain.

d) Calculate the post-collision velocity of cart 3.

e) Was the second collision elastic, inelastic, or completely inelastic? Show all work and explain.

Answer #1

Two low-friction physics demo carts collide on a horizontal
track. The first cart, with a mass of 0.150 kg , is moving to the
right with a speed of 0.800 m/s . The second cart, with a mass of
0.298 kg , is moving to the left with a speed of 2.27 m/s . The
carts collide in an elastic collision, such that the total klinetic
energy after the collsion is equal to the total kinetic energy
before the collision....

Question 1:
part a)
Cart 1, having mass m1 = 3.0-kg, moving to the right
with a speed of 1.0 m/s has a head-on collision with cart 2 of mass
m2 = 3.0-kg that is initially moving to the left with a
speed of 1.0 m/s. After the collision, the cart 1 is moving to the
left with a speed of 1.0 m/s. What is the final velocity of cart
2?
part b) An object's velocity of +4.10 m/s changes...

Two carts are initially moving to the right on a low-friction
track, with cart 1 behind cart 2. Cart 1 has a speed twice that of
cart 2 and so moves up and rear-ends cart 2, which has twice the
inertia of cart 1.
Q1: Suppose that the the initial speed of cart 2 is vv. What is
the speed of cart 1 right after the collision if the collision is
elastic?
Express your answer in terms of v.
Q2:What...

Two carts are on an air-track where friction is negligible. The
Incident Cart is moving at an initial velocity of 0.25080m/s, the
target cart is at rest. The Incident cart has a mass of 995.8 g and
the target cart has a mass of 490.3 g. The carts stick together,
the final velocity after collision is 0.077302 m/s. The collision
is considered inelastic.
a) What is the Initial Momentum of the carts?
b) What is the Final Momentum of the...

2 air carts collide and stick together. cart one is M1
= 0.755 kg and initial speed of 0.435 m/s the cart to right is
initially at rest with mass m2= 0.300kg.
a.find the velocity of the center of mass before the carts Collide
and stick together
b. find the velocity of the center of mass after the carts Collide
and stick together
c. find the kinetic energy of the system before and after the
Collision

A 2.002.3-kg cart is rolling across a frictionless, horizontal
track toward a 0.601.5-kg cart that is held initially at rest. The
carts are loaded with strong magnets that cause them to attract one
another. Thus, the speed of each cart increases. At a certain
instant before the carts collide, the first cart’s velocity is 4.80
14.5 m/s, and the second cart’s velocity is 1.9021.9 m/s. What was
the velocity of the first cart when the second cart was still at...

A cart of mass m traveling to the right on a frictionless
track with a speed of 4v0 collides with another cart of mass 2M
traveling to the left with speed v0. If the collision is perfectly
elastic, and carts travel in opposite directions after the
collision, determine the speeds of the two carts immediately after
the collision in terms of m and v0.

Two carts are on an air-track where friction is negligible. The
Incident Cart is moving at an initial velocity of 0.44374 m/s, the
target cart is at rest. The Incident cart has a mass of 490.3 g and
the target cart has a mass of 497.4 g. The final velocity of the
incident cart is 0.043994 m/s and the final velocity of the target
cart is 0.001001 m/s. The collision is elastic.
a) What is the Initial Momentum of the...

Two carts of mass 50 kg have a collision. Before the collision,
the first cart was travelling to the right at 4 m/s, and the 2nd
cart was travelling to the left at 3 m/s. After the collision, the
carts stick together. a) 10 pts What is the velocity of the carts
immediately after the collision? b) 6 pts How much kinetic energy
was lost in the collision? Where did this energy go? c) 10 pts
After the carts have...

Cart 1, with m1= 5.8 kg, is moving on a frictionless linear air
track at an initial speed of 1.8 m/s. It undergoes an elastic
collision with an initially stationary cart 2, with m2, an unknown
mass. After the collision, cart 1 continues in its original
direction at 0.7 m/s. 1) The horizontal component of the momentum
is conserved for cart 1. cart 2. the system of cart 1 and cart 2.
Momentum is not conserved for any of these...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 1 minute ago

asked 2 minutes ago

asked 2 minutes ago

asked 4 minutes ago

asked 6 minutes ago

asked 10 minutes ago

asked 10 minutes ago

asked 23 minutes ago

asked 35 minutes ago

asked 37 minutes ago

asked 38 minutes ago

asked 41 minutes ago