Question

A massless string is wound around a solid cylinder that has a radius of 0.27 m...

A massless string is wound around a solid cylinder that has a radius of 0.27 m and a mass of 28.8 kg. The free end of the string is tied to a block of mass 4 kg which hangs straight down. At t=0, the cylinder is allowed to spin about an axis through its center and the block falls, unwinding the string. Assume that the cylinder spins without friction. What is the acceleration of the block?

Homework Answers

Answer #1

Gravitational acceleration = g = 9.81 m/s2

Mass of the cylinder = M = 28.8 kg

Radius of the cylinder = R = 0.27 m

Moment of inertia of the cylinder = I

I = MR2/2

I = (28.8)(0.27)2/2

I = 1.05 kg.m2

Mass of the block = m = 4 kg

Tension in the string = T

Acceleration of the block = a

Angular acceleration of the cylinder =

= a/R

From the free body diagram of the block,

ma = mg - T

T = mg - ma

For the cylinder,

I = TR

I(a/R) = (mg - ma)R

Ia = mgR2 - maR2

(I + mR2)a = mgR2

[1.05 + (4)(0.27)2]a = (4)(9.81)(0.27)2

a = 2.13 m/s2

Acceleration of the block = 2.13 m/s2

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
A block of mass = M (measured in kg) is supported by a massless string wound...
A block of mass = M (measured in kg) is supported by a massless string wound on a uniform solid cylinder, which has a mass = 3M . The radius of the cylinder = R (in units of meters) and the axle about which the cylinder turns has no friction. The system, shown in the accompanying diagram, is released from rest and the falling mass unwinds the rope without any slipping of the rope as the mass falls. (a) How...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What's the angular velocity after 4.0 s, in radians per second? (The moment of inertia of the cylinder is 1 half M R...
We wrap a light, flexible cable around a solid cylinder with mass 0.95 kg and radius...
We wrap a light, flexible cable around a solid cylinder with mass 0.95 kg and radius 0.23 m . The cylinder rotates with negligible friction about a stationary horizontal axis. We tie the free end of the cable to a block of mass 1.84 kg and release the object with no initial velocity at a distance 1.58 m above the floor. As the block falls, the cable unwinds without stretching or slipping, turning the cylinder. Suppose the falling mass is...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius 0.19 m. The cylinder rotates with negligible friction about a stationary horizontal axis. We attach the free end of the cable to a block of mass 48 kg, and release the block from rest at a distance 3.9 m above the floor. As the block falls, the cable unwinds without stretching or slipping. Find the angular speed of the cylinder (in radians/s) the moment...
A light string is wrapped around a solid cylinder and a 300 g mass hangs from...
A light string is wrapped around a solid cylinder and a 300 g mass hangs from the free end of the string, as shown. When released, the mass falls a distance 54 cm in 3.0 s. a. Draw free-body diagrams for the block and the cylinder. b. Calculate the tension in the string. c. Calculate the mass of the cylinder Please explain thoroughly, with pictures. Thx!
A disc of mass m and radius a has a string wrapped around it with one...
A disc of mass m and radius a has a string wrapped around it with one end attached to a fixed support. The disc is allowed to fall with the string unwinding as it falls Derive the equations of motion using classical mechanics
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to rotate about an axis through its center, with an angular acceleration of 0.2 rad/s^2. (a) Assuming a piece of string is wrapped around the cylinder, in such a way that the turning cylinder pulls the string onto itself, what is the total length of string wrapped on the cylinder at t= 10s? (b) What is the linear acceleration of a knot in the string...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum,...
A 90 kg mass is tied to a massless rope wrapped around a solid cylindrical drum, mounted on a frictionless horizontal axle. When the mass is released, it falls with acceleration 3.4 m/s2 . a. Find the rope tension. Express your answer in newtons. b. Find the drum's mass.