Question

A sphere of mass M, radius r, and rotational inertia I is released from rest at...

A sphere of mass M, radius r, and rotational inertia I is released from rest at the top of an inclined plane of height h as shown above. (diagram not shown)
If the plane has friction so that the sphere rolls without slipping, what is the speed vcm of the center of mass at the bottom of the incline?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A sphere is released from the top of a rough inclined plane. The friction is sufficient...
A sphere is released from the top of a rough inclined plane. The friction is sufficient so that the sphere rolls without slipping. Mass of the sphere is M and radius is R. The height of the center of the sphere from ground is h. Find the speed of the center of the sphere as it reaches the bottom of the sphere.
A hollow sphere (mass M, radius R) starts from rest at the top of a hill...
A hollow sphere (mass M, radius R) starts from rest at the top of a hill of height H. It rolls down the hill without slipping. Find an expression for the speed of the ball's center of mass once it reaches the bottom of the hill.
A solid sphere of radius r and mass m is released from a rest on a...
A solid sphere of radius r and mass m is released from a rest on a track. At a height h above a horizontal surface. The sphere rolls without slipping with its motion continuing around a loop of radius R<<r A) If R=0.3h, what is the speed of the sphere when it reaches the top of the loop? Your response must be expressed in terms of some or all of the quantities given above and physical and numerical constants B)...
A hollow sphere of radius 0.120 m, with rotational inertia I = 0.0612 kg·m2 about a...
A hollow sphere of radius 0.120 m, with rotational inertia I = 0.0612 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 33.8° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 42.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 0.610...
A hollow sphere of radius 0.110 m, with rotational inertia I = 0.0371 kg·m2 about a...
A hollow sphere of radius 0.110 m, with rotational inertia I = 0.0371 kg·m2 about a line through its center of mass, rolls without slipping up a surface inclined at 19.9° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 84.0 J. (a) How much of this initial kinetic energy is rotational? (b) What is the speed of the center of mass of the sphere at the initial position? When the sphere has moved 1.50...
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without...
A sphere of radius r=34.5 cm and mass m= 1.80kg starts from rest and rolls without slipping down a 30.0 degree incline that is 10.0 m long. calculate the translational and rotational speed when it reaches the bottom.
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R=...
Problem 4 A hoop and a solid disk both with Mass (M=0.5 kg) and radius (R= 0.5 m) are placed at the top of an incline at height (h= 10.0 m). The objects are released from rest and rolls down without slipping. a) The solid disk reaches to the bottom of the inclined plane before the hoop. explain why? b) Calculate the rotational inertia (moment of inertia) for the hoop. c) Calculate the rotational inertia (moment of inertia) for the...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of...
A solid, homogeneous sphere with of mass of M = 2.25 kg and a radius of R = 11.3 cm is resting at the top of an incline as shown in the figure. The height of the incline is h = 1.65 m, and the angle of the incline is θ = 17.3°. The sphere is rolled over the edge very slowly. Then it rolls down to the bottom of the incline without slipping. What is the final speed of...
A hollow sphere of radius 0.24 m, with rotational inertia I = 0.036 kg · m2...
A hollow sphere of radius 0.24 m, with rotational inertia I = 0.036 kg · m2 about a line through its center of mass, rolls without slipping up a surface inclined at 29° to the horizontal. At a certain initial position, the sphere's total kinetic energy is 25 J. (a) How much of this initial kinetic energy is rotational? _________ J (b) What is the speed of the center of mass of the sphere at the initial position? _________m/s Now,...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a ramp without slipping. The initial height of the incline is H= 2m. The moment of inertia of the ball is I=(2/5)MR2 What is the total kinetic energy of the bowling ball at the bottom of the incline? 684J 342J 235J 137J If the speed of the bowling ball at the bottom of the incline is V=5m/s, what is the rotational speed ω at the...