Question

Two blocks of masses m1 = 4.64 kg and m2 = 7.01 kg are placed on...

Two blocks of masses m1 = 4.64 kg and m2 = 7.01 kg are placed on a frictionless horizontal surface. A light spring is placed between the blocks and the blocks are pushed together with the spring between them and released. m1 kg moves to the right with a speed of 7.4 m/s. Determine the speed of the other mass. (Hint: Momentum is conserved!)

Homework Answers

Answer #1

From conservation of momentum, initial momentum is same as the final momentum of the system. In this situation, the initial momentum of the system is zero. The if v1 is the final velocity of mass m1 and v2 is the final velocity of mass m2. since they both move in the opposite directions, the velocity of one of the block is negative let it be v2. So we get

This is the velocity of the block of mass m2.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface....
Two blocks with masses 3.0 kg and 5.0 kg are placed on a horizontal frictionless surface. A light spring is placed in a horizontal position between the blocks. The blocks are pushed together, compressing the spring, and then released from rest. After contact with the spring ends, the 5.0-kg mass has a speed of 2.0 m/s. How much potential energy was stored in the spring when the blocks were released?
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on...
Two objects of masses m1 = 0.40 kg and m2 = 0.92 kg are placed on a horizontal frictionless surface and a compressed spring of force constant k = 290 N/m is placed between them as in figure (a). Neglect the mass of the spring. The spring is not attached to either object and is compressed a distance of 9.6 cm. If the objects are released from rest, find the final velocity of each object as shown in figure (b)....
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by...
Two blocks with masses m1 = 1.10 kg and m2 = 3.50 kg are connected by a massless string. They are released from rest. The coefficent of kinetic friction between the upper block and the surface is 0.440. Assume that the pulley has a negligible mass and is frictionless, and calculate the speed of the blocks after they have moved a distance 68.0 cm.
Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg are released from...
Two blocks of masses m1 = 2.00 kg and m2 = 4.00 kg are released from rest at a height of h = 5.00 m on a frictionless track as shown to the right. When they meet on the level portion of the track, they undergo a head-on, elastic collision. Determine the maximum heights to which m1 and m2 rise on the curved portion of the track after the collision. h1 =  m h2 =  m
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface....
Two blocks with masses 0.443 kg (A) and 0.769 kg (B) sit on a frictionless surface. Between them is a spring with spring constant 26 N/m, which is not attached to either block The two blocks are pushed together, compressing the spring by 0.338 meter, after which the system is released from rest. What is the final speed of the block A? (Hint: you will need to use both conservation of energy and conservation of momentum to solve this problem)....
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released...
Two blocks of masses m1 = 1.95 kg and m2 = 3.90 kg are each released from rest at a height of h = 6.00 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) Two blocks are on a curved ramp similar in shape to a half-pipe. There is a flat horizontal surface with opposite...
Three blocks of masses m1=1.00 kg, m2=2.00 kg, and m3=3.00 kg are set at rest on...
Three blocks of masses m1=1.00 kg, m2=2.00 kg, and m3=3.00 kg are set at rest on a level air track from right to left. Then m3 is pushed toward m2 with a speed of 3.00 m/s. Assuming that all collisions are elastic, what are the final speeds of (a) m1, (b) m2, and (c) m3?
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released...
Two blocks of masses m1 = 1.50 kg and m2 = 3.00 kg are each released from rest at a height of h = 4.40 m on a frictionless track, as shown in the figure below, and undergo an elastic head-on collision. (Let the positive direction point to the right. Indicate the direction with the sign of your answer.) (a) Determine the velocity of each block just before the collision. (b) Determine the velocity of each block immediately after the...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a...
Objects with masses m1 = 12.0 kg and m2 = 8.0 kg are connected by a light string that passes over a frictionless pulley as in the figure below. If, when the system starts from rest, m2 falls 1.00 m in 1.48 s, determine the coefficient of kinetic friction between m1 and the table.    Express the friction force in terms of the coefficient of kinetic friction. Obtain an expression for the acceleration in terms of the masses and the...
Two masses, m1=3 kg and m2=2 kg are on a horizontal surface and are connected together...
Two masses, m1=3 kg and m2=2 kg are on a horizontal surface and are connected together via a massless rope. An external force F pulls on m1 at an angle q=30° from the horizontal, as shown in the Figure 2 below. There is friction between m2 and the surface, with coefficients of friction ms=0.4 and mk=0.3, however the friction between m1 and the surface is negligibly small. What is the minimum value of F such that the masses will begin...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT