Question

After you pick up a spare, your bowling ball rolls without slipping back toward the ball...

After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of v = 2.85 m/s. To reach the rack, the ball rolls up a ramp that gives the ball a h = 0.47 m vertical rise. What is the speed of the ball when it reaches the top of the ramp?

Homework Answers

Answer #1

Apply conservation of energy

PEi + KEi = PEf + KEf

0 + (1/2)*m*vi^2 + (1/2)*I*wi^2 = m*g*h + (1/2)*m*vf^2 + (1/2)*I*wf^2

(1/2)*m*vi^2 + (1/2)*(2/5)*m*r^2*wi^2 = m*g*h + (1/2)*m*vf^2 + (1/2)*(2/5)*m*r^2*wf^2

(1/2)*m*vi^2 + (1/5)*m*vi^2 = m*g*h + (1/2)*m*vi^2 + (1/5)*m*vf^2

(7/10)*m*vi^2 = m*g*h + (7/10)*m*vf^2

v^2 = 10*g*h/7 + vf^2

==> vf = sqrt(vi^2 - 10*g*h/7)

= sqrt(2.85^2 - 10*9.8*0.47/7)

= 1.24 m/s <<<<<<<<<<<<----------------------Answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
After you pick up a spare, your bowling ball rolls without slipping back toward the ball...
After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of v = 3.10 m/s, as shown in the figure below. To reach the rack, the ball rolls up a ramp that rises through a vertical distance of h = 0.529 m. What is the linear speed of the ball when it reaches the top of the ramp? Please provide a brief explanation
After you pick up a spare, your bowling ball rolls without slipping back toward the ball...
After you pick up a spare, your bowling ball rolls without slipping back toward the ball rack with a linear speed of vi=2.62 m/s. To reach the rack, the ball rolls up a ramp that rises through a vertical distance of h=0.47m. Part A What is the linear speed of the ball when it reaches the top of the ramp? Part B If the radius of the ball were increased, would the speed found in part A increase, decrease, or...
A bowling ball rolls without slipping up a ramp that slopes upward at an angle β...
A bowling ball rolls without slipping up a ramp that slopes upward at an angle β to the horizontal. Treat the ball as a uniform, solid sphere, ignoring the finger holes. A) In order for the rotation of the ball to slow down as it rolls uphill, in which direction must the frictional force point? B) Compared to a frictionless surface, does the ball roll farther uphill, the same distance, or not as far? Please explain. C) What is the...
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack,...
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 5.28 m/s at the bottom of the rise. Find the translational speed at the top.
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack,...
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 9.00 m/s at the bottom of the rise. Find the translational speed at the top.
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack,...
A bowling ball encounters a 0.760-m vertical rise on the way back to the ball rack, as the drawing illustrates. Ignore frictional losses and assume that the mass of the ball is distributed uniformly. The translational speed of the ball is 9.14 m/s at the bottom of the rise. Find the translational speed at the top.
Jeffrey Lebowski rolls his bowling ball down the lane with the thumb hole perfectly lined up...
Jeffrey Lebowski rolls his bowling ball down the lane with the thumb hole perfectly lined up to rotate perpenducilar to the horizontal. (What a dude!) The ball is rolling without slipping at 7.00 m/s. The diameter of a bowling ball is 12.7 cm. Think of the circular motion of the thumb hole as vertical simple harmonic motion. What is the frequency of the the thumb hole being at the top of the ball? Hz What is the apparent vertical speed...
A solid, uniform ball rolls without slipping up a hill, as shown in the figure (Figure...
A solid, uniform ball rolls without slipping up a hill, as shown in the figure (Figure 1) . At the top of the hill, it is moving horizontally; then it goes over the vertical cliff. Take V = 28.0 m/s and H = 24.0 m . Part A How far from the foot of the cliff does the ball land? Part B How fast is it moving just before it lands? Thank you in advance for your help!
Consider a bowling ball rolling without slipping up a hill. a) Find how high up this...
Consider a bowling ball rolling without slipping up a hill. a) Find how high up this inclined surface the ball rolls if the ball was rolling at 2.5 m/s at the bottom of the hill. b) Would a volleyball moving at 2.5 m/s roll further up this than a bowling ball? Explain. c) Would the bowling ball move further up the hill if it were sliding without friction instead of rolling? Explain.
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a...
A Brunswick bowling ball with mass M= 7kg and radius R=0.15m rolls from rest down a ramp without slipping. The initial height of the incline is H= 2m. The moment of inertia of the ball is I=(2/5)MR2 What is the total kinetic energy of the bowling ball at the bottom of the incline? 684J 342J 235J 137J If the speed of the bowling ball at the bottom of the incline is V=5m/s, what is the rotational speed ω at the...