Question

The Daytona 500 stock car race is held on a track that is approximately 2.5 miles...

The Daytona 500 stock car race is held on a track that is approximately 2.5 miles long, and the turns are banked at an angle of 31 degrees. It is currently possible for the cars to travel through the turns at a speed of 172 miles per hour. Assuming these cars are on the verge of slipping into the outer wall of the racetrack, find the coefficient of static friction between the tires and the track (assume the track is circular)

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
The Daytona 500 stock car race is held on a track that is approximately 2.5 mi...
The Daytona 500 stock car race is held on a track that is approximately 2.5 mi long, and the turns are banked at an angle of 31°. It is currently possible for cars to travel through the turns at a speed of about 164 mi/h. Assuming these cars are on the verge of slipping into the outer wall of the racetrack, find the coefficient of static friction between the tires and the track. (Assume that the track is circular.)
A curve at a racetrack has a radius of 600 m and is banked at an...
A curve at a racetrack has a radius of 600 m and is banked at an angle of 7.0 degrees. On a rainy day, the coefficient of friction between the cars' tires and the track is 0.50. Part A. What is the maximum speed at which a car could go around this curve without slipping? Give answer as vmax= and m/s
A race car drives at a speed of 20.0m/s around a circular track banked inwards at...
A race car drives at a speed of 20.0m/s around a circular track banked inwards at an angle of 20.0o from the horizontal. The track is icy, so there is no appreciable friction of the tires on the track. Determine the radius of the track. Submit your answer in the following form: • List all the physical forces acting on the object. Which one of them supplies a centripetal component? • Give your numerical answer for the radius of the...
A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first...
A race-car driver is driving her car at a record-breaking speed of 225 km/h. The first turn on the course is banked at 15, and the car’s mass is 1450 kg. find : a)        Calculate the radius of curvature for this turn.             b)        Calculate the centripetal acceleration of the car. c)         If the car maintains a circular track around the curve (does not move up or down the bank), what is the magnitude of the force of static friction?...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between...
An 800-kg race car can drive around an unbanked turn with coefficient of static friction between the track and the car's tires of 0.02. The turn has a radius of curvature of 150 m. Air flowing over the car's wing exerts a downward-pointing force of 10 000 N on the car. Calculate the maximum speed without slipping.
A 890-kg race car can drive around an unbanked turn at a maximum speed of 43...
A 890-kg race car can drive around an unbanked turn at a maximum speed of 43 m/s without slipping. The turn has a radius of 150 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 12000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?
A 770-kg race car can drive around an unbanked turn at a maximum speed of 42...
A 770-kg race car can drive around an unbanked turn at a maximum speed of 42 m/s without slipping. The turn has a radius of 160 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 12000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?
Chapter 05, Problem 22 A 780-kg race car can drive around an unbanked turn at a...
Chapter 05, Problem 22 A 780-kg race car can drive around an unbanked turn at a maximum speed of 43 m/s without slipping. The turn has a radius of 180 m. Air flowing over the car's wing exerts a downward-pointing force (called the downforce) of 11000 N on the car. (a) What is the coefficient of static friction between the track and the car's tires? (b) What would be the maximum speed if no downforce acted on the car?
4. A designer plans to build a circular Indy 500 racetrack with a bank angle of...
4. A designer plans to build a circular Indy 500 racetrack with a bank angle of 12 degrees and it must keep cars moving at 150 miles per hour (242 km per hour) from sliding off the track even when the track is slick. a) Draw a diagram showing all forces acting on a racecar as it rounds the track. Neglect friction. b) Choose an x-y coordinate system and write the components of the forces. Why is the choice of...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25...
A curve of radius 30 m is banked so that a 950-kg car traveling at 25 miles per hour can round it even if the road is so icy that the coefficient of static friction is approximately zero. You are commissioned to tell the local police the range of speeds at which a car can travel around this curve without skidding. Neglect the effects of air drag and rolling friction. If the coefficient of static friction between the snowy road...