Question

A particle of mass, m, in an isolated environment moves along a line with speed v...

A particle of mass, m, in an isolated environment moves along a line with speed v whilst experiencing a force proportional to its distance from the origin.

a) Determine the Langrangian of the system

b) Determine the Hamiltonian of the system

c) Write down Hamilton’s equations of motion for the particle d) Show that the particle executes simple harmonic motion

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle moves in a potential field V(r,z)=az/r, a is constant. Use the cylindrical coordinates as...
A particle moves in a potential field V(r,z)=az/r, a is constant. Use the cylindrical coordinates as the general coordinates. 1)Determine the Lagrangian of this particle. 2)Calculate the generalized impulse. 3)Determine the Hamiltonian of this particle and the Hamiltonian’s equations of motion. 4)Determine the conserved quatities of this system.
A particle of mass m is projected with an initial velocity v0 in a direction making...
A particle of mass m is projected with an initial velocity v0 in a direction making an angle α with the horizontal level ground as shown in the figure. The motion of the particle occurs under a uniform gravitational field g pointing downward. (a) Write down the Lagrangian of the system by using the Cartesian coordinates (x, y). (b) Is there any cyclic coordinate(s). If so, interpret it (them) physically. (c) Find the Euler-Lagrange equations. Find at least one constant...
A particle of mass m moves in a circle of radius R at a constant speed...
A particle of mass m moves in a circle of radius R at a constant speed v as shown in the figure. The motion begins at point Q at time t = 0. Determine the angular momentum of the particle about the axis perpendicular to the page through point P as a function of time.
A particle of mass m moves about a circle of radius R from the origin center,...
A particle of mass m moves about a circle of radius R from the origin center, under the action of an attractive force from the coordinate point P (–R, 0) and inversely proportional to the square of the distance. Determine the work carried out by said force when the point is transferred from A (R, 0) to B (0, R).
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during...
A particle moves along a line with velocity v(t)=(3 - t)(2+t), find the distance traveled during the time interval [0, 1].
5-7 A particle of mass m moves under the action of gravity on the surface of...
5-7 A particle of mass m moves under the action of gravity on the surface of a horizontal cylinder. a) Obtain the Lagrange motion equations for the particle. b) If the particle slides in a vertical plane having left the top of the cylinder at a very small speed, find the reaction force as a function of the position. c) At what point will the cylinder particle separate?
a particle of mass m moves in three dimension under the action of central conservative force...
a particle of mass m moves in three dimension under the action of central conservative force with potential energy v(r).find the Hamiltonian function in term of spherical polar cordinates ,and show φ,but not θ ,is ignorable .Express the quantity J2=((dθ/dt)2 +sin2 θ(dφ /dt)2) in terms of generalized momenta ,and show that it is a second constant of of the motion
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is...
A particle travels along a straight line with a velocity v=(12−3t^2) m/s , where t is in seconds. When t = 1 s, the particle is located 10 m to the left of the origin. Determine the displacement from t = 0 to t = 7 s. Determine the distance the particle travels during the time period given in previous part.
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position,...
A particle moving along the x axis in simple harmonic motion starts from its equilibrium position, the origin, at t = 0 and moves to the right. The amplitude of its motion is 3.10 cm, and the frequency is 1.60 Hz. (a) Find an expression for the position of the particle as a function of time. (Use the following as necessary: t. Assume that x is in centimeters and t is in seconds. Do not include units in your answer.)...
Let us consider a particle of mass M moving in one dimension q in a potential...
Let us consider a particle of mass M moving in one dimension q in a potential energy field, V(q), and being retarded by a damping force −2???̇ proportional to its velocity (?̇). - Show that the equation of motion can be obtained from the Lagrangian: ?=?^2?? [ (1/2) ??̇² − ?(?) ] - show that the Hamiltonian is ?= (?² ?^−2??) / 2? +?(?)?^2?? Where ? = ??̇?^−2?? is the momentum conjugate to q. Because of the explicit dependence of...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT