Question

A wave has the following properties: amplitude = 0.157 m, period = 0.733 s, wave speed...

A wave has the following properties: amplitude = 0.157 m, period = 0.733 s, wave speed = 12.8 m/s. The wave is traveling in the -x direction. What is the equation for the wave?

y= ___________

(units?)*sin (________)(units?)*t(+/- ?)(_______)(units?)*x)

Homework Answers

Answer #1

Find the angular frequency using the period and the wave number using angular frequency and speed. Use the values to find the equation for the wave as shown below

***********************************************************************************************
Check the answer and let me know in the comments immediately if you find something wrong or missing... I will rectify the mistakes asap if any

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 cm ,...
Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 cm , speed 3.0 m/s , and amplitude 6.0 cm . Choose the y-equation for a wave traveling in the negative x-direction with wavelength 50 {\rm \;cm} , speed 3.0 {\rm \;m/s} , and amplitude 6.0 {\rm \;cm} . 1)    y=( 6.0 cm )sin(2π(x/( 50 cm )+( 6.00 s−1 )t)) 2)    y=( 6.0 cm )sin(2π( 50 cm )x−( 6.00 s−1 )t)) 3)    y=( 6.0 cm )sin(2π(x/(...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? m (b) What is the phase constant? rad (c) What is the maximum transverse speed...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The...
(1A) A transverse sinusoidal wave travels along a string with a constant speed 10 m/s. The acceleration of a small lump of mass on the string (a) varies sinusoidally in time in a direction perpendicular to the string, (b) varies sinusoidally in time in a direction parallel to the string, (c) is 10 m/s 2 , (d) is zero. (1B) In a periodic transverse wave on a string the value of the wave speed depends on (a) amplitude, (b) wavelength,...
A harmonic transverse wave function is given by y(x, t) = (0.800 m)sin(16.4x + 10.2t) where...
A harmonic transverse wave function is given by y(x, t) = (0.800 m)sin(16.4x + 10.2t) where all values are in the appropriate SI units. (Assume x is in meters and t is in seconds.) (a) What are the propagation speed and direction of the wave's travel? speed     m/s direction     ---Select--- +x −x +y −y +z −z (b) What are the wave's period and wavelength? period     s wavelength     m (c) What is the amplitude? m
The electric field of a sinusoidal electromagnetic wave obeys the equation E=−(350V/m)sin[(5.89×1015rad/s)t+(1.96×107rad/m)x]E=−(350V/m)sin⁡[(5.89×1015rad/s)t+(1.96×107rad/m)x]. a)what is the amplitude...
The electric field of a sinusoidal electromagnetic wave obeys the equation E=−(350V/m)sin[(5.89×1015rad/s)t+(1.96×107rad/m)x]E=−(350V/m)sin⁡[(5.89×1015rad/s)t+(1.96×107rad/m)x]. a)what is the amplitude of the electric field of this wave? b)what is the amplitude of the magnetic field of this wave? c) what is the frequency of the wave? d)what is the wavelength of the wave? e) what is the period of the wave? f) speed of the wave?
A transverse sinusoidal wave on a string has a period T = 21.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 21.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 2.50 m/s. (a) What is the amplitude of the wave? 0.0217 Your response differs from the correct answer by more than 10%. Double check your...
A transverse sinusoidal wave on a string has a period T = 35.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 35.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 3.50 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...
A traveling wave has an angular frequency of 4.5 rad/s and a wavelength of 4m. The...
A traveling wave has an angular frequency of 4.5 rad/s and a wavelength of 4m. The maximum acceleration of a point on the wave is 3.5 m/s2. a) What is the speed of the wave? b) Write the fitted equation for y(x, t). Find the velocity of a point on the wave located at x = 6.5 m at t = 3.75 s. What is the period of the wave oscillations? What is the maximum speed of a point on...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30...
Transverse waves traveling along a string have the following properties. Amplitude of the wave = 2.30 mm Wavelength of the wave = 0.128 m Speed of the wave = 328 m/s a) Determine the time for a particle of the string to move through a total distance of 1.50 km. in s b) If the string is held under a tension of 982 N, determine its linear density. in g/m