Question

A soccer player kicks a soccer ball of mass 0.50 kg that is initially at rest....

A soccer player kicks a soccer ball of mass 0.50 kg that is initially at rest. The player's foot is in contact with the ball for 1.8 10-3 s. The force of the kick is given by the following formula for 0 t 1.8 10-3 s, where t is in seconds. F(t) = [(7.2 106)t - (2.2 109)t2] N (a) Find the magnitude of the impulse imparted to the ball. Incorrect: Your answer is incorrect. Ns (b) Find the magnitude of the average force exerted by the player's foot on the ball during the period of contact. N (c) Find the magnitude of the maximum force exerted by the player's foot on the ball during the period of contact. N (d) Find the magnitude of the ball's velocity immediately after it loses contact with the player's foot. m/s

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest....
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The player's foot is in contact with the ball for 1.60 × 10-3 s, and the force of the kick is given by F(t) = [(6.39 × 105)t - (3.99 × 108)t2] N for 0≤t≤1.60×10-3s, where t is in seconds. Find the magnitudes of the following: (a) the impulse on the ball due to the kick, (b) the average force on the ball from...
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest....
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The player's foot is in contact with the ball for 1.50 × 10-3 s, and the force of the kick is given by F(t) = [(6.99 × 105)t - (4.66 × 108)t2] N for 0 less-than-or-equal-to t less-than-or-equal-to 1.50 times 10 Superscript negative 3 Baseline s, where t is in seconds. Find the magnitudes of the following: (a) the impulse on the ball due...
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest....
A soccer player kicks a soccer ball of mass 0.45 kg that is initially at rest. The player's foot is in contact with the ball for 1.9
a soccer player is ready to deliver a kick to a ball. he will kick the...
a soccer player is ready to deliver a kick to a ball. he will kick the ball with a force of 1350 N directed at an angle of 48 degree above horizontal. his foot will be in contact with the ball for 5.9x10^-3 s. what is the impulse delivered by the player's foot? A volleyball player is ready to return the approaching ball with a speed of 11.0m/s. if she returns the ball in the same direction with a speed...
A soccer ball of mass 0.30 kg is rolling with velocity 0, 0, 3.0 m/s, when...
A soccer ball of mass 0.30 kg is rolling with velocity 0, 0, 3.0 m/s, when you kick it. Your kick delivers an impulse of magnitude 1.6 N · s in the −x direction. The net force on the rolling ball, due to the air and the grass, is 0.28 N in the direction opposite to the direction of the ball's momentum. Using a time step of 0.5 s, find the position of the ball at a time 1.5 s...
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with...
1) Calculate the magnitude of the linear momentum for the following cases. (a) a proton with mass 1.67  10-27 kg, moving with a speed of 4.65  106 m/s kg · m/s (b) a 17.5-g bullet moving with a speed of 340 m/s kg · m/s (c) a 73.5-kg sprinter running with a speed of 12.5 m/s kg · m/s (d) the Earth (mass = 5.98  1024 kg) moving with an orbital speed equal to 2.98  104 m/s. kg · m/s 2) A soccer player...
A soccer ball of mass 0.31 kg is rolling with velocity <0, 0, 2.1> m/s, when...
A soccer ball of mass 0.31 kg is rolling with velocity <0, 0, 2.1> m/s, when you kick it. Your kick delivers an impulse of magnitude 2.7 N·s in the -x direction. The net force on the rolling ball, due to the air and the grass, is 0.37 N in the direction opposite to the direction of the ball's momentum. Using a time step of 0.5 s, find the position of the ball at a time 1.5 s after you...
A soccer ball of mass 0.31 kg is rolling with velocity <0, 0, 2.1> m/s, when...
A soccer ball of mass 0.31 kg is rolling with velocity <0, 0, 2.1> m/s, when you kick it. Your kick delivers an impulse of magnitude 2.7 N·s in the -x direction. The net force on the rolling ball, due to the air and the grass, is 0.37 N in the direction opposite to the direction of the ball's momentum. Using a time step of 0.5 s, find the position of the ball at a time 1.5 s after you...
A player bounces a 0.46-kg soccer ball off her head, changing the velocity of the ball...
A player bounces a 0.46-kg soccer ball off her head, changing the velocity of the ball from v⃗ i = (8.4 m/s )x^ + ( -2.3 m/s )y^ to v⃗ f = (5.9 m/s )x^ + (3.0 m/s )y^. If the ball is in contact with the player's head for 6.7 ms, what is the direction of the impulse delivered to the ball? What is the magnitude of the impulse delivered to the ball?
A soccer player kicks a 0.43 kg soccer ball down a smooth hill 18 m high...
A soccer player kicks a 0.43 kg soccer ball down a smooth hill 18 m high with an initial speed of 7.4 m/s. a) Calculate the ball’s speed as it reaches the bottom of the hill. b) The soccer player stands at the same point on the hill and gives the ball a kick up the hill at 4.2 m/s. The ball moves up the hill, comes to rest, and rolls back down the hill. Determine the ball’s speed as...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT