Question

A 9.12 μF capacitor is charged to 2.25×103 V and is then connected in series with...

A 9.12 μF capacitor is charged to 2.25×103 V and is then connected in series with a 82.0 Ω resistor and a 5.66 Ω resistor. How much energy is dissipated by the 82.0 Ω resistor if the resistors are allowed to discharge completely?

Homework Answers

Answer #1

Dear student|

[ ] If you have any query regarding this solution, don't forget to comment I will immediately sort it out.and if you are satisfied and find helpful then KINDLY GIVE THE RATING .your rating is very important to me.

Thanks for asking ||

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 10 μF capacitor in series with a 10 kΩ resistor is connected across a 500...
A 10 μF capacitor in series with a 10 kΩ resistor is connected across a 500 V DC supply. The fully charged capacitor is disconnected from the supply and discharged by connecting a 1000 Ω resistor across its terminals. Calculate: (a) the initial value of the charging current; (b) the initial value of the discharge current; and (c) the amount of heat, in joules, dissipated in the 1000 Ω resistor.
A 202-Ω resistor is connected in series with a 5.0-μF capacitor and a 60-Hz, 120-V rms...
A 202-Ω resistor is connected in series with a 5.0-μF capacitor and a 60-Hz, 120-V rms line. If electrical energy costs $0.080/kWh, how much does it cost to leave this circuit connected for 18 h? ____¢
An initially uncharged 12 μF capacitor charged by a 12 V power supply (battery) connected in...
An initially uncharged 12 μF capacitor charged by a 12 V power supply (battery) connected in series with a 100 Ω resistor. i. What is the total energy stored in the capacitor when it reached the fully charged situation? ii. What is the total energy supplied by the power supply during this time? iii. Does the capacitor store the total energy supplied by the battery? Otherwise, explain how the energy supplied by the battery used in the circuit.
A 15.9 μF capacitor is charged to a potential of 60.0 V and then discharged through...
A 15.9 μF capacitor is charged to a potential of 60.0 V and then discharged through a 75.0 Ω resistor. (a) How long after discharge begins does it take for the capacitor to lose 90.0% of the following? (i) its initial charge s (ii) its initial energy s (b) What is the current through the resistor at both times in part (a)? (i) at tcharge A (ii) at tenergy A
A 3490 - Ω resistor and a 1.0 - μF capacitor are connected in series across...
A 3490 - Ω resistor and a 1.0 - μF capacitor are connected in series across a generator (60.0 Hz, 120 V). Determine the power delivered to the circuit.
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ...
A 1.02 μF capacitor that is initially uncharged is connected in series with a 8.00 kΩ resistor and an emf source with 77.2 V and negligible internal resistance. The circuit is completed at t = 0. Part A Just after the circuit is completed, what is the rate at which electrical energy is being dissipated in the resistor? Express your answer with the appropriate units. Part B At what value of tt is the rate at which electrical energy is...
A 16.0 μF capacitor is charged to a potential of 50.0 V and then discharged through...
A 16.0 μF capacitor is charged to a potential of 50.0 V and then discharged through a 225 Ω resistor. a. How long does it take the capacitor to lose half of its charge? b. How long does it take the capacitor to lose half of its stored energy?
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source...
A 23-Ω resistor, 58-μF capacitor, and 3.5-mH inductor are connected in series with an AC source of amplitude 12 V and frequency 120 Hz. Part (h) With a source voltage of Vsource = V0 cos(2πft), what is the instantaneous voltage, in volts, across the capacitor at time t = 2.25 s? Part (i) What is the amplitude of the voltage drop across the inductor, in volts? Part (j) With a source voltage of Vsource = V0cos(2πft), what is the instantaneous...
A 2.66 ?μF capacitor is charged by being connected across a 12.0-V battery. (a)Find the charge...
A 2.66 ?μF capacitor is charged by being connected across a 12.0-V battery. (a)Find the charge on the capacitor. (b)Find the potential energy of the charged capacitor.
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged...
A 2.70 μF capacitor is charged to 500 V and a 3.95 μF capacitor is charged to 525 V . a) These capacitors are then disconnected from their batteries, and the positive plates are now connected to each other and the negative plates are connected to each other. What will be the potential difference across each capacitor? b) What will be the charge on each capacitor? c) What is the voltage for each capacitor if plates of opposite sign are...