Question

A 20.8 cm -diameter coil consists of 22 turns of circular copper wire 2.8 mm in...

A 20.8 cm -diameter coil consists of 22 turns of circular copper wire 2.8 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 8.50×10^?3 T/s .

a) Determine the current in the loop

b) Determine the rate at which thermal energy is produced.

Homework Answers

Answer #1

Resistance of copper wire will be

R = rho*L/A

rho = 1.7*10^-8 ohm-m

L = 22*2*pi*10.4*10^-2 = 14.37 m

A = pi*d^2/4 = pi*(2.8*10^-3)^2/4 = 6.16*10^-6 m^2

R = 1.7*10^-8*14.37/(6.16*10^-6) = 0.0396 ohm

Emf is given by:

EMF = N*d(phi)/dt

EMF = N*A*dB/dt

Using given values:

EMF = 22*(pi*0.104^2 m^2)*(8.5*10^-3 T/sec)

EMF = 0.00635 V

Now Current will be

i = V/R = 0.00635/0.0396

i = 0.160 Amp

Part B

rate at which thermal energy produced will be

P = V*i = 0.00635*0.160

P = 0.001016 W = 1.016 mW

Please Upvote. Let me know if you have any doubt.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 19.0 cm -diameter coil consists of 21 turns of circular copper wire 3.0 mm in...
A 19.0 cm -diameter coil consists of 21 turns of circular copper wire 3.0 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 8.38×10−3 T/s . a) Determine the current in the loop. b) Determine the rate at which thermal energy is produced.
A 23.6 cm -diameter coil consists of 21 turns of circular copper wire 3.0 mm in...
A 23.6 cm -diameter coil consists of 21 turns of circular copper wire 3.0 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 8.60×10?3 T/s. Part A: Determine the current in the loop. Part B: Determine the rate at which thermal energy is produced.
A 15.4 cm -diameter coil consists of 21 turns of circular copper wire 2.6 mm in...
A 15.4 cm -diameter coil consists of 21 turns of circular copper wire 2.6 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 7.02×10−3 T/s . Determine the current in the loop. Express your answer using two significant figures. I =    A Determine the rate at which thermal energy is produced. Express your answer using two significant figures. P =    W
A 29 cm diameter coil consists of 22 turns of cylindrical copper wire 2.6 mm in...
A 29 cm diameter coil consists of 22 turns of cylindrical copper wire 2.6 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 7.00
A 26.0 cm diameter coil consists of 24 turns of cylindrical copper wire 2.40 mm in...
A 26.0 cm diameter coil consists of 24 turns of cylindrical copper wire 2.40 mm in diameter. A uniform magnetic field, perpendicular to the plane of the coil, changes at a rate of 6.50e-3 T/s. Determine the current in the loop in milli-amps (the resistivity for copper is 1.72e-8Ω.m). answer in mA
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The...
2. A circular coil with 30 turns of wire has a diameter of 2.00 cm. The total resistance of the coil is 0.350 Ω. An applied uniform magnetic field is directed upward, perpendicular to the plane of the coil. a) If the magnetic field changes linearly from 0.000 T to 0.800 T in 0.500 s, what is the induced emf in the coil while the field is changing? b) What is the magnitude and direction (CW or CCW when looked...
The magnetic field perpendicular to a single 15.7-cm-diameter circular loop of copper wire decreases uniformly from...
The magnetic field perpendicular to a single 15.7-cm-diameter circular loop of copper wire decreases uniformly from 0.530 T to zero. If the wire is 2.25 mm in diameter, how much charge moves past a point in the coil during this operation? The resistivity of copper is 1.68×10−8Ω⋅m.
A physics technician makes a circular coil consists of 120 turns of copper wire with a...
A physics technician makes a circular coil consists of 120 turns of copper wire with a resistance of 0.6 Ω. The coil radius is 6 cm. the coil is connected to a 12 V battery. (a) Calculate the magnetic moment of the coil. (b) If the coil was placed between the pole faces of a magnet where the magnetic field strength was 0.5 T, calculate the maximum torque on the coil.
4. A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular...
4. A length of 20-gauge copper wire (of diameter 0.8118 mm) is formed into a circular loop with a radius of 30.0 cm. A magnetic field perpendicular to the plane of the loop increases from zero to 13.0 mT in 0.28 s. Find the average electrical power dissipated in the process. Answer in W
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω)...
A circular coil of 312 winds of wire (radius = 7.0 cm, resistance = 7.4 Ω) is placed in a uniform magnetic field that is perpendicular to the plane of the loop. The magnitude of the field changes with time according to ? = 90sin(7?) mT, where ? is measured in seconds. Determine the magnitude of the current induced in the loop at ?=?/7 s.