Question

Ben and Jerry are standing at the center of a 134 kg merry-go-round of radius 1.30...

Ben and Jerry are standing at the center of a 134 kg merry-go-round of radius 1.30 m that is already spinning at 3.00 rad/s. They proceed to walk in opposite directions toward the edge of the merry-go-round.

If Ben reaches the edge while Jerry is halfway between the center and the edge, what will be the new angular velocity (in rad/s) of the merry-go-round? Assume Ben and Jerry can be modeled as point masses of 32.0 kg and 21.0 kg, respectively, and that the merry-go-round can be modeled as a disk rotated about its axis.

Homework Answers

Answer #1

Using Angular momentum

Li = Lf

Ii*wi = If*wf

wf = wi*(Ii/If)

moment of inertia of disk = M*R^2/2

Moment of inertia of Ben/Jerry about center of disk = m*r^2

where r = distance from center

Ii = M*R^2/2 + 0 + 0

Since initially Ben And Jerry are at center, so r = 0

Ii = 134*1.30^2/2 = 113.23 kg-m^2

wi = 3 rad/sec

If = MR^2/2 + mb*rb^2 + mj*rj^2

mb = mass of ben = 32 kg

mj = mass of jerry = 21 kg

rb = distance of ben from center = R = 1.30 m

rj = distance of jerry from center = R/2 = 0.65 m

If = 134*1.30^2/2 + 32*1.30^2 + 21*0.65^2

If = 176.18 kg-m^2

Now

wf = 3*(113.23/176.18)

wf = 1.93 rad/sec

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a 40 kg child is standing on the edge of a 100 kg merry go round(...
a 40 kg child is standing on the edge of a 100 kg merry go round( flat disk), with a radius of 4m. The merry go round is initially traveling at 20 rads/s. The child walks towards the center of the merry go round , until she is 0.5m from the center. What is the final angular speed other child at the new location?
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates...
A 36.5 kg child stands at the center of a 125 kg playground merry-go-round which rotates at 3.10 rad/s. If the child moves to the edge of the merry-go-round, what is the new angular velocity of the system? Model the merry-go-round as a solid disk.
A merry-go-round (radius = 4 m) with a perfect frictionless bearing is pushed with a force...
A merry-go-round (radius = 4 m) with a perfect frictionless bearing is pushed with a force of 24 N by a young girl. She pushes with a constant force that is oriented tangentially to the edge of the merry-go-round. After she pushes the merry-go-round through 14 full rotations (at which point she lets go) it is spinning with an angular speed of 3 rad/s. a) What is the moment of inertia of the merry-go-round? b) After the girl lets go,...
A child of mass 60 kg sits at the center of a playground merry-go-round which is...
A child of mass 60 kg sits at the center of a playground merry-go-round which is spinning at 1.5 rad/s. The moment of inertia and radius of the merry-go-round are 150 kg×m2 and 1.2 m respectively. How much rotational kinetic energy does the system lose as the child moves to the edge of the merry-go-round? (Treat the child as a point mass.)
On a playground, a merry-go-round with a total mass of 100 kg and a radius of...
On a playground, a merry-go-round with a total mass of 100 kg and a radius of 2.5mis rotating counterclockwise around its center with an angular speed of 0.5 rad/s. A girl with a mass of 40 kgruns at a speed of 4 m/s towards the edge of the merry-go-round and jumps on, as shown. What is the angularvelocity (magnitude and direction) of the merry-go-round after the girl lands on it? Assume the merry-go-roundis a uniform disk and treat the girl...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a 1.60-m radius, and is spinning at 22.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as points.
Three children are riding on the edge of a merry-go-round that is 105 kg, has a...
Three children are riding on the edge of a merry-go-round that is 105 kg, has a 1.70-m radius, and is spinning at 24.0 rpm. The children have masses of 22.0, 28.0, and 33.0 kg. If the child who has a mass of 28.0 kg moves to the center of the merry-go-round, what is the new angular velocity in rpm? Ignore friction, and assume that the merry-go-round can be treated as a solid disk and the children as points.
A merry-go-round is a common piece of playground equipment. A 3.0-m-diameter merry-go-round, which can be modeled...
A merry-go-round is a common piece of playground equipment. A 3.0-m-diameter merry-go-round, which can be modeled as a disk with a mass of 300 kg , is spinning at 24 rpm. John runs tangent to the merry-go-round at 4.6 m/s, in the same direction that it is turning, and jumps onto the outer edge. John's mass is 30 kg.
A playground merry-go-round has a radius of 3m and a moment of inertia of 1500 kg...
A playground merry-go-round has a radius of 3m and a moment of inertia of 1500 kg m^2. 4 kids sit at the outer edge with each kid having a mass of 20 kg, and the merry-go-round spins at 1.75 rad/s. If 2 of the 4 kids move to a position that is 0.3m from the center of the merry-go-round, what is the new rotational speed of the merry-go-round? No energy is lost to friction and the children are point masses.
A child with a mass of 50 kg is standing at the edge of a merry-go-round...
A child with a mass of 50 kg is standing at the edge of a merry-go-round which has a radius of 3.50 m and a mass of 700 kg. The merry-go-around is initially at rest. The child throws a 1.20 kg stone perpendicular to the merry-go-round's radius at a speed of 6.0 m/s. What is the resulting angular speed of the entire system? Friction is negligible and the merry-go-round is a uniform disk. The child is classified as a point...