Question

How can I convert a second orde ODE into a first-order coupled equation in terms of...

How can I convert a second orde ODE into a first-order coupled equation in terms of the variables of X and P for a simple harmonic oscillator using the Hamiltonian Equation?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
What is the difference between zero, first, and second order chemical reactions in terms of the...
What is the difference between zero, first, and second order chemical reactions in terms of the form of their rate equation and how can I graph concentration-time data showing which order they are?
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x...
Q.3 (Applications of Linear Second Order ODE): Consider the ‘equation of motion’ given by ODE d2x + ω2x = F0 cos(γt) dt2 where F0 and ω ̸= γ are constants. Without worrying about those constants, answer the questions (a)–(b). (a) Show that the general solution of the given ODE is [2 pts] x(t) := xc + xp = c1 cos(ωt) + c2 sin(ωt) + (F0 / ω2 − γ2) cos(γt). (b) Find the values of c1 and c2 if the...
In lab you create a system where the Hamiltonian can be written as ? = ?0...
In lab you create a system where the Hamiltonian can be written as ? = ?0 + ?, where ?0 is the Simple Harmonic Oscillator Hamiltonian,,-h22md2dx2+12kx2 , and ? is an applied perturbation given by, Dx4. What is the first order correction to the energy ground state energy,   Ψ0=mωℏπ14 e(-mωx22ℏ) What is the first order correction to the first excited state energy, Ψ1=mωℏπ142mωℏ xe-mωx22ℏ For the Simple Harmonic Oscillator system, the fundamental frequency is the v=0 to v=1 transition. Based...
solve the second order ode ( I have problem to choose right yp for term has...
solve the second order ode ( I have problem to choose right yp for term has cosh or sinh) y"-6y'+y=6 cosh x y(0)=0.2 y'(0)=0.05
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify...
Consider the second order differential equation d2/dt^2 x + 6 dx/dt + 10x = 0. Classify the harmonic oscillator (undamped, underdamped, critically damped, over damped). Justify your answer.
Imagine a harmonic oscillator with Hamiltonian H=p^2/2m+½x^2 For simplicity, we will assume that m=ℏ=1. First, we...
Imagine a harmonic oscillator with Hamiltonian H=p^2/2m+½x^2 For simplicity, we will assume that m=ℏ=1. First, we set up our system in the first excited state of this Hamiltonian. Second, we turn on an extra potential, V_ex(x)=x^4. Third, before the added potential has a chance to change the system state, we measure the energy.By expressing H and V_ex in terms of the raising and lowering operators, evaluate the average energy we would see if we repeated this whole process many times.
Consider the Bernoulli equation ?′ + (1/x)? = ?33 a. Convert to a first order linear...
Consider the Bernoulli equation ?′ + (1/x)? = ?33 a. Convert to a first order linear equation in ? in standard form. b. Write the integrating factor ? and solve for ?.
I have a simple question. Can a fourth order polynomial equation be solved by hand? Or...
I have a simple question. Can a fourth order polynomial equation be solved by hand? Or do you need to use computer program or calculator program to solve it? For example you can solve second order polynomial equation using quadratic equation if you want to solve it by hand. Can you do something similar with fourth order? Or does it have to be done on math programs?
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method...
10.16: Write a user-defined MATLAB function that solves a first-order ODE by applying the midpoint method (use the form of second-order Runge-Kutta method, Eqs(10.65),(10.66)). For function name and arguments use [x,y]=odeMIDPOINT(ODE,a,b,h,yINI). The input argument ODE is a name for the function that calculates dy/dx. It is a dummy name for the function that is imported into odeMIDPOINT. The arguments a and b define the domain of the solution, h is step size; yINI is initial value. The output arguments, x...
How do we know which order of differencial equation we would use to find 1st ODE...
How do we know which order of differencial equation we would use to find 1st ODE e.g Seperable linear homogeneous exact/non exact bernoulli which one do we consider first..? To determine which differcial equation we will use?