Question

Suppose our Sun eventually collapses into a white dwarf, in the process losing about two thirds...

Suppose our Sun eventually collapses into a white dwarf, in the process losing about two thirds of its mass and winding up with a radius 2.0 percent of its existing radius. What would its new rotation rate be? (Take the Sun's current period to be about 30 days.)
____ rad/s
What would be its final KE in terms of its initial KE of today?
(KEfinal / KEinitial) = ____

Homework Answers

Answer #1

Assuming the sun and white dwarf has a uniform density inside them.

The moment of inertia of the Sun

Where symbols have their usual meaning.

For the white dwarf, we know

and

So, the moment of inertia of the White dwarf

Now applying conservation of angular momentum

Putting this value in equation

So the rotation rate of the white dwarf is 1.818 x 10-2 rad/s.

Initial rotational kinetic energy

Final rotational kinetic energy

So the ratio is 7500.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose our Sun eventually collapses into a white dwarf, in the process losing about three fourths...
Suppose our Sun eventually collapses into a white dwarf, in the process losing about three fourths of its mass and winding up with a radius 4.0 percent of its existing radius. a) What would its new rotation rate be? (Take the Sun's current period to be about 30 days.) rad/s b) What would be its final KE in terms of its initial KE of today? (KEfinal / KEinitial) =
In a little over 5 billion years, our Sun will collapse to a white dwarf approximately...
In a little over 5 billion years, our Sun will collapse to a white dwarf approximately 16,000 km in diameter. (Ignore the fact that the Sun will lose mass as it ages.) (a) What will our Sun’s angular momentum and rotation rate be as a white dwarf? (Express your answers as multiples of its present-day values.) (b) Compared to its present value, will the Sun’s rotational kinetic energy increase, decrease, or stay the same when it becomes a white dwarf?...
Suppose a star the size of our Sun, but with mass 5.0 times as great, were...
Suppose a star the size of our Sun, but with mass 5.0 times as great, were rotating at a speed of 1.0 revolution every 15 days. If it were to undergo gravitational collapse to a neutron star of radius 14 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either Part A) No angular momentum Part B) its proportional share three-quarters of the initial...
Suppose a star the size of our Sun, but with mass 8.0 times as great, were...
Suppose a star the size of our Sun, but with mass 8.0 times as great, were rotating at a speed of 1.0 revolution every 8.0 days. If it were to undergo gravitational collapse to a neutron star of radius 11 km , losing three-quarters of its mass in the process, what would its rotation speed be? Assume also that the thrown- off mass carries off either a) no angular momentum b)its proportional share three-quarters of the initial angular momentum Express...
Suppose a star the size of our Sun, but of mass 8.0 times as great, was...
Suppose a star the size of our Sun, but of mass 8.0 times as great, was rotating at a speed of 1.0 revolution every 21 days. If it were to undergo gravitational collapse to a neutron star of radius 20 km, losing three quarters of its mass in the process, what would its rotation speed be? Assume that the star is a uniform sphere at all times and that the lost mass carries off no angular momentum. Answer in rev/day
Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as...
Suppose a star the size of our Sun (r=7.0*105 km), but with mass 6.0 times as great, were rotating at a speed of 1.0 revolution every 10 days. If it were to undergo gravitational collapse to a neutron star of radius 10 km, losing 2/3 of its mass in the process, what would its rotation period be in μs? Assume the star is a uniform sphere at all times. Assume also that the thrown-off mass carries off no angular momentum....
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary...
Please answer the following Case analysis questions 1-How is New Balance performing compared to its primary rivals? How will the acquisition of Reebok by Adidas impact the structure of the athletic shoe industry? Is this likely to be favorable or unfavorable for New Balance? 2- What issues does New Balance management need to address? 3-What recommendations would you make to New Balance Management? What does New Balance need to do to continue to be successful? Should management continue to invest...
Please read the article and answear about questions. Determining the Value of the Business After you...
Please read the article and answear about questions. Determining the Value of the Business After you have completed a thorough and exacting investigation, you need to analyze all the infor- mation you have gathered. This is the time to consult with your business, financial, and legal advis- ers to arrive at an estimate of the value of the business. Outside advisers are impartial and are more likely to see the bad things about the business than are you. You should...
Using the model proposed by Lafley and Charan, analyze how Apigee was able to drive innovation....
Using the model proposed by Lafley and Charan, analyze how Apigee was able to drive innovation. case:    W17400 APIGEE: PEOPLE MANAGEMENT PRACTICES AND THE CHALLENGE OF GROWTH Ranjeet Nambudiri, S. Ramnarayan, and Catherine Xavier wrote this case solely to provide material for class discussion. The authors do not intend to illustrate either effective or ineffective handling of a managerial situation. The authors may have disguised certain names and other identifying information to protect confidentiality. This publication may not be...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From...
Sign In INNOVATION Deep Change: How Operational Innovation Can Transform Your Company by Michael Hammer From the April 2004 Issue Save Share 8.95 In 1991, Progressive Insurance, an automobile insurer based in Mayfield Village, Ohio, had approximately $1.3 billion in sales. By 2002, that figure had grown to $9.5 billion. What fashionable strategies did Progressive employ to achieve sevenfold growth in just over a decade? Was it positioned in a high-growth industry? Hardly. Auto insurance is a mature, 100-year-old industry...