Question

Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has...

Light with a frequency of 2.21×10152.21×1015 Hz ejects electrons from the surface of calcium, which has a work function of 2.87 eV. What is the minimum de Broglie wavelength of the ejected electrons?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Photons with a frequency of 8.9 1015 Hz shine on a piece of platinum (work function...
Photons with a frequency of 8.9 1015 Hz shine on a piece of platinum (work function = 6.4 eV). What is the energy of the ejected electrons? What is the de Broglie wavelength of the ejected electrons?
Consider electrons at the surface of a metal whose work function is 2.4 eV. Laser light...
Consider electrons at the surface of a metal whose work function is 2.4 eV. Laser light of wavelength 350 nm and power output of 100 mW is shone on this metal, and all the energy of each photon is absorbed by the electrons at the surface. If we model the de Broglie wave function of the electrons as plane waves, how many electrons per second do we expect to see ejected from the metal’s surface? (5) Hint: treat the work...
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus....
a) A photon of wavelength 43 nm is incident upon a metal in a photoelectric apparatus. A stopping voltage of 21 V was obtained. What is the threshold frequency of the metal? (format of a.b x 10cdHz) b) Light with a frequency of 5.00 x 1014 Hz illuminates a photoelectric surface that has a work function of 2.10 x 10-19 J. What is the maximum kinetic energy of the emitted photoelectrons? (format of a.bc x 10-de J ) c) Light...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the...
a) A photoelectric surface has a work function of 3.30 x 10-19 J. What is the threshold frequency of this surface? (format of a.bc x 10de Hz) b) What is the stopping voltage of an electron that has 5.40 x 10-19 J of kinetic energy? (3 digit answer) c) A photoelectric surface requires a light of maximum wavelength of 675 nm to cause electron emission. What is the work function (in eV) of this surface? (3 digit answer) d) A...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency...
a) A photoelectric surface has a work function of 2.75 eV. What is the minimum frequency of light that will cause photoelectron emission from this surface ? answer in the format of a.bc x 10de Hz b) A photoelectric cell is illuminated with white light (wavelengths from 400 nm to 700 nm). What is the maximum kinetic energy (in eV) of the electrons emitted by this surface if its work function is 2.30 eV ? 4 digit answer
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy...
When light of frequency f is shined on a given metal, electrons of maximum kinetic energy of 3.25 eV are ejected from the metal. When light of frequency 4f is shined on the same metal, electrons of maximum energy 15.65 eV are ejected from the metal. Question: What is the work function of the metal?
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal,...
A) Light of frequency 9.13 x 10^14 s-1 shines on the surface of a certain metal, Metal X. if the ejected electrons have a velocity of 6.13x10^5 m/s, what is the work function (binding energy) of Metal X? B) What is the longest wavelength of light (in nm) that can be used to eject electrons from the surface of Metal X? C) A different metal, Metal Y, has smaller binding energy. If the same frequency of light from Part A...
When a metal was exposed to one photon of light at a frequency of 4.55× 1015...
When a metal was exposed to one photon of light at a frequency of 4.55× 1015 s–1, one electron was emitted with a kinetic energy of 4.10× 10–19 J. Calculate the work function of this metal. What is the maximum number of electrons that could be ejected from this metal by a burst of photons (at some other frequency) with a total energy of 5.11× 10–7 J?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 3.35 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
The minimum frequency of light needed to eject electrons from a metal is called the threshold...
The minimum frequency of light needed to eject electrons from a metal is called the threshold frequency, ν0. Find the minimum energy needed to eject electrons from a metal with a threshold frequency of 2.05 × 1014 s–1. With what maximum kinetic energy will electrons be ejected when this metal is exposed to light with a wavelength of λ = 265 nm?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT