Question

Two hockey pucks of the same mass 0.5kg elastically collide on a frictionless air hockey table....

Two hockey pucks of the same mass 0.5kg elastically collide on a frictionless air hockey table. Incoming puck A has a velocity of 6m/s and scatters at an angle of 50°. Puck B is initially at rest and scatters 40° the other way. Solve for the speed of Puck A after the collision.

Homework Answers

Answer #1

Since it is an elastic collision, the conservation of momentum and energy are valid here.

Applying conservation of momentum

X-axis:

Y-axis:

where and are the angle with x-axis at which the puck A and B are scattered, respectively.

u1, v1 and v2 are intial velocity of puck A, final velcoity of puck A and final velocity of puck B, respectively.

Inserting this value in first equation of conservation of momentum, we get

Therefore the velocity of puck A is 3.87m/s after collision.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 7.10 m/s along the +x-axis and scatters to an angle of 36.0° above the +x-axis, what is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = Velocity (direction) = below +x-axis What is the...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 6.50 m/s along the +x-axis and scatters to an angle of 32.0° above the +x-axis. A) What is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = _______ Velocity (direction) = ________ below +x-axis...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a...
The drawing shows a collision between two pucks on an air-hockey table. Puck A has a mass of 0.20 kg and is moving along the x axis with a velocity of 6.60 m/s. It makes a collision with puck B, which has a mass of 0.40 kg and is initially at rest. After the collision, the two pucks fly apart with angles as shown in the drawing (α = 62° and β = 40°). Find the final speed of puck...
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward...
On a frictionless, horizontal air table, puck A (with mass 0.250 kg ) is moving toward puck B (with mass 0.400 kg ) A -After the collision, puck A has a velocity of 0.150 m/s to the left, and puck B has velocity 0.750 m/s to the right. What was the speed of puck A before the collision? B- If the two pucks collide and stick together with a final velocity of 0.6000 m/s to the right, what was the...
Two identical hockey pucks, each with a mass of 156 grams, are sliding along a frictionless...
Two identical hockey pucks, each with a mass of 156 grams, are sliding along a frictionless sheet of ice. One puck is moving to the right at 12.5 m/s and the other is moving to the left at 12.5 m/s. What is the magnitude of the total momentum of the two pucks (in kg⋅m/s)? A 1500 kg car and a 4500 kg truck are traveling down the 210 freeway. The car and the truck have the same velocity. Which one...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.255 kg ) is moving toward puck B (with mass 0.375 kg ), which is initially at rest. After the collision, puck A has velocity 0.121 m/s to the left, and puck B has velocity 0.653 m/s to the right. a) What was the speed vAi of puck A before the collision? b) Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
On a frictionless horizontal air table, puck A (with mass 0.252 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.252 kg ) is moving toward puck B (with mass 0.368 kg), which is initially at rest. After the collision, puck A has velocity 0.121 m/s to the left, and puck B has velocity 0.651 m/s to the right. What was the speed vAi of puck A before the collision? = 0.830 m/s Calculate  ?K, the change in total kinetic energy of the system that occurs in the collision. = ?
On a frictionless horizontal air table, puck A (with mass 0.246 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.246 kg ) is moving toward puck B (with mass 0.372 kg ), which is initially at rest. After the collision, puck A has velocity 0.121 m/s to the left, and puck B has velocity 0.653 m/s to the right. Part A What was the speed vAi of puck A before the collision? View Available Hint(s) vAi = 1.111.11   m/s   SubmitPrevious Answers Incorrect; Try Again; 3 attempts remaining Note that...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward...
On a frictionless horizontal air table, puck A (with mass 0.245 kg ) is moving toward puck B (with mass 0.373 kg ), which is initially at rest. After the collision, puck A has velocity 0.118 m/s to the left, and puck B has velocity 0.647 m/s to the right. Calculate ΔK, the change in the total kinetic energy of the system that occurs during the collision.
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving...
1. On a frictionless horizontal air table, puck A (with mass 0.252 kgkg ) is moving toward puck B (with mass 0.375 kgkg ), which is initially at rest. After the collision, puck A has velocity 0.122 m/sm/s to the left, and puck B has velocity 0.651 m/sm/s to the right. Calculate ΔKΔKDeltaK, the change in the total kinetic energy of the system that occurs during the collision. 2. A 2.5 kgkg block of wood sits on a frictionless table....