Question

1. A 8600kg boxcar is traveling at 12 m/s strikes a second boxcar of mass 7900...

1. A 8600kg boxcar is traveling at 12 m/s strikes a second boxcar of mass 7900 kg moving in the same direction. The two stick together and move off with a speed of 5.25 m/s. What was the original speed of the second boxcar? Explain your reasoning.

2. How much kinetic energy was lost in the collision?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 9600 kg boxcar traveling at 15 m/s strikes a second boxcar at rest. The two...
A 9600 kg boxcar traveling at 15 m/s strikes a second boxcar at rest. The two stick together and move off with a speed of 5.0 m/s. What is the mass of the second car?
A 2250 kg car traveling in the neagtive x direction at 8.5 m/s strikes a second...
A 2250 kg car traveling in the neagtive x direction at 8.5 m/s strikes a second car of mass 2830 kg which is moving. The first rebounds and moves off with a speed of 2.7 m/s. After the collision, the second car moves in the negative x direction at 3.2 m/s. What was the original speed and direction of the second car? Explain your reasoning. Then how much kinetic energy was lost in the collision?
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The...
Question1) A car moving North at 12 m/s strikes a stationary car of equal mass. The first car moves off after the collision at an angle of 30° East of North with a speed of 8.0 m/s. a.   What is the velocity of the struck car just after the collision? b.   Show that the collision is inelastic. c.   Explain how dents, skid marks, etc. show that kinetic energy has been lost. d.   If the collision were perfectly elastic, what would...
a 7500 kg railroad car traveling at a speed of 26.0 m/s strikes a 5000kg car...
a 7500 kg railroad car traveling at a speed of 26.0 m/s strikes a 5000kg car traveling at 10.0m/s. If the cars lock together as a result of collision what is their common speed afterward? How much of the initial kinetic energy is transferred to other forms of energy? Answer in 3 decimal places, and include full equation please
A 10,000-kg railroad car A, traveling at a speed of 24.0 m/s strikes an identical car,...
A 10,000-kg railroad car A, traveling at a speed of 24.0 m/s strikes an identical car, B, at rest. If the cars lock together and move at the same speed 12.0 m/s as a result of the collision, how much of the initial kinetic energy is transformed to thermal or other forms of energy? Round your answer to0 decimal places A marble column of diameter 1.54 m and area 1.86 m2 supports a mass of 59 600 kg.Calculate the strain,...
Ball A has a mass of 100 kg; it is traveling to the right at 6.2...
Ball A has a mass of 100 kg; it is traveling to the right at 6.2 m/s. Ball B has a mass of 120 kg; it is traveling to the left at 4.7 m/s.(a) Assume an inelastic collision (they stick together). Determine velocity at which the two move off together. Give speed and direction. Pay attention to the + and – signs.(b) Assume they have a perfectly elastic collision. Determine the speeds and directions of each of the balls.
An object of mass m1=6.1 kg moving at 5.1 m/s strikes a stationary second object of...
An object of mass m1=6.1 kg moving at 5.1 m/s strikes a stationary second object of unknown mass. After an elastic collision, the first object is observed moving at 3.06 m/s at an angle of -43° with respect to the original line of motion. What is the energy of the second object?
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?
A 2.0-N puck is traveling at 3.0 m/s. It strikes an 4.0-N puck, which is moving...
A 2.0-N puck is traveling at 3.0 m/s. It strikes an 4.0-N puck, which is moving at – 2.0 m/s before collision. The two pucks stick together. Find their common final speed
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples...
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? _______ m/s (b) How much kinetic energy is lost in the collision? _______ J