Question

You are designing the section of a roller coaster ride shown in the figure. Previous sections...

You are designing the section of a roller coaster ride shown in the figure. Previous sections of the ride give the train a speed of 10.7 m/s at the top of the incline, which is 35.9 m above the ground. As any good engineer would, you begin your design with safety in mind. Your local government\'s safety regulations state that the riders\' centripetal acceleration should be no more than n = 1.57 g at the top of the hump and no more than N = 5.21 g at the bottom of the loop. For this initial phase of your design, you decide to ignore the effects of friction and air resistance.What is the minimum radius you can use for the semi-circular hump?What is the minimum radius you can use for the vertical loop?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
a) A roller coaster contains a vertical loop of radius R = 20.0 m. The roller...
a) A roller coaster contains a vertical loop of radius R = 20.0 m. The roller coaster weighs 3000 N when full of riders. What is the minimum speed the roller coaster must have at the top of the loop for the coaster and riders not to fall off? b) Now assume that the roller coaster is going twice as fast as the minimum speed found in part a. By what factor does the weight of each rider increase or...
You are upgrading an amusement park ride by adding a circular loop to an existing roller...
You are upgrading an amusement park ride by adding a circular loop to an existing roller coaster ride. The first hill for the existing roller coaster is 55 m tall, and you are to build, right at the bottom of this hill, the tallest loop possible without having the cars fall out of the track or the passengers fall out of the cars. The roller coaster starts from rest at the top of the hill. What is the maximum radius...
Modern roller coasters have vertical loops like the one shown in the figure. The radius of...
Modern roller coasters have vertical loops like the one shown in the figure. The radius of curvature is smaller at the top than on the sides so that the downward centripetal acceleration at the top will be greater than the acceleration due to gravity, keeping the passengers pressed firmly into their seats. A) What is the speed of the roller coaster in m/s at the top of the loop if the radius of curvature there is 11 m and the...
suppose you start a roller coaster car at the top of a hill with a height...
suppose you start a roller coaster car at the top of a hill with a height of 70 m and go around a loop- the- loop that has its bottom at ground level and has a radius of 15 m. If you weigh 70 kg. Calculate how heavy you will feel a.at the top of the loop b. at one of the sides of the loop Remember, the weight you feel is the normal force.
You are testing a new amusement park roller coaster with an empty car with a mass...
You are testing a new amusement park roller coaster with an empty car with a mass of 120 kg . One part of the track is a vertical loop with a radius of 12.0 m . At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s . As the car rolls from point A to point B, how much...
A roller-coaster car may be represented by a block of mass 50.0 kg . The car...
A roller-coaster car may be represented by a block of mass 50.0 kg . The car is released from rest at a height h = 48.0 m above the ground and slides along a frictionless track. The car encounters a loop of radius R = 16.0 m at ground level, as shown. As you will learn in the course of this problem, the initial height 48.0 m is great enough so that the car never loses contact with the track....
)A roller-coaster car may be represented by a block of mass 50.0 kg . The car...
)A roller-coaster car may be represented by a block of mass 50.0 kg . The car is released from rest at a height h = 45.0 m above the ground and slides along a frictionless track. The car encounters a loop of radius R = 15.0 m at ground level, as shown. As you will learn in the course of this problem, the initial height 45.0 m is great enough so that the car never loses contact with the track.Find...
You have been hired to design a spring-launched roller coaster that will carry two passengers per...
You have been hired to design a spring-launched roller coaster that will carry two passengers per car. The car goes up a 13-m-high hill, then descends 17 m to the track's lowest point. You've determined that the spring can be compressed a maximum of 2.5 m and that a loaded car will have a maximum mass of 400 kg . For safety reasons, the spring constant should be 14 % larger than the minimum needed for the car to just...
1. A circus performer is practicing riding a motorcycle in the Globe of Death, a hollow...
1. A circus performer is practicing riding a motorcycle in the Globe of Death, a hollow sphere you can ride a motorcycle from within if you manage to get your motorcycle fast enough. She estimates the radius to be round 4.0 m. The total mass of her motorcycle and her is 100 kg. As she safely completed her first vertical loop, returning to the bottom of the sphere at a speed of 25 m/s, how much force is the globe...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...