Question

Calculate the center of mass of a nonuniform rod of length L, whose linear density is...

Calculate the center of mass of a nonuniform rod of length L, whose linear density
is p(x) = p0√x ​and the moment of inertia for this rod when the axis of rotation is located
at the lighter end.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis...
A thin, 1-dimensional, uniform rod of mass M and length L lies on the x axis with one end at the origin. (a) Find its moment of inertia tensor about the origin. (b) Find the moment of inertia tensor if the rod’s center is located at the origin.
(a) Find the moment of inertia, I, for a rod of length L and mass M...
(a) Find the moment of inertia, I, for a rod of length L and mass M for an arbitrary axis that is at distance of x from its one edge. (b) Now find the moment of inertia when the axis is at one edge. (c) Find the moment of inertia when the axis is in the middle. Please leave detailed steps
A long thin rod of length L has a linear density λ(x)= A(L-x)^2 where x is...
A long thin rod of length L has a linear density λ(x)= A(L-x)^2 where x is the distance from the left end of the rod. a) What is the mass of the bar? b) How far is the center of mass of the bar from the left end of the bar?
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the...
A thin rod of length L has uniform linear mass density λ (mass/length). (a) Find the gravitational potential Φ(r) in the plane that perpendicularly bisects the rod where r is the perpendicular distance from the rod center. Assume the gravitational potential at infinity is zero. (b) Find an approximate form of your expression from part (a) when r >> L. (c) Find an approximate form of your expression from part (a) when r<< L.
6) A rod with length "l" is lied along x-axis. The charge density of the rod...
6) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the potential of the rod for a the point p on x-axis. 7) A rod with length "l" is lied along x-axis. The charge density of the rod is "a". Calculate the Electric field of the rod for a point p on x-axis.
The linear density (lamda) of a thin rod varies with position x as (lamda)=lamda0(x^3/L^3). The rod...
The linear density (lamda) of a thin rod varies with position x as (lamda)=lamda0(x^3/L^3). The rod lies along the X axis. If M is the mass of the rod and L is the total length, then, a) Find lamda0 in terms of M and L b)Find the position of the centre of mass c)Find the moment of inertia around the centre of mass. d) Now imagine the same thin rod is attached to a hinge that is allowed to rotate....
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg...
A rod of length l=0.8m and mass M= 3.7kg joins two particles with masses m1 =4.5kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 a) Calculate the total moment of inertia of the system b) What is...
An object is formed by attaching a uniform, thin rod with a mass of mr =...
An object is formed by attaching a uniform, thin rod with a mass of mr = 7.22 kg and length L = 5.52 m to a uniform sphere with mass ms = 36.1 kg and radius R = 1.38 m. Note ms = 5mr and L = 4R. 1)What is the moment of inertia of the object about an axis at the left end of the rod? 2)If the object is fixed at the left end of the rod, what...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg...
A rod of length l=1.1m and mass M= 5.5kg joins two particles with masses m1 =4.8kg and m2 = 2.8kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 3.5 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) angularmomentum a) Calculate the total moment of inertia of the system I...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg...
A rod of length l=2.2m and mass M= 9.7kg joins two particles with masses m1 =12.9kg and m2 = 5.0kg, at its ends. The combination rotates in the xy-plane about a pivot through the center of the rod with the linear speed of the masses of v= 12.9 m/s. (Moment of inertia of a uniform rod rotating about its center of mass I= 1 12 M l2 ) a) Calculate the total moment of inertia of the system I =...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT