Question

Flux and nonconducting shells. A charged particle is suspended at the center of two concentric spherical...

Flux and nonconducting shells. A charged particle is suspended at the center of two concentric spherical shells that are very thin and made of nonconducting material. Figure (a) shows a cross section. Figure (b) gives the net flux ? through a Gaussian sphere centered on the particle, as a function of the radius r of the sphere. The scale of the vertical axis is set by ?s = 19.0

Homework Answers

Answer #1

the region 0<r<4 inside sphere A;
Gauss says: ? =?ds*E(?,?,r), WHERE
ds*E(?,?,r) is dot product of 2 vectors ds and E(?,?,r),
|ds|=r*sin?*d?*r*d? is elementary area on a sphere with radius r in spherical coordinate system, direction of ds being normal to the sphere,
|E(?,?,r)|=-q/(4?*?0*r^2) is strength of electric field produced by a point charge q in the center, direction of E being normal to the sphere, ?0=8.854e-12 is const,
angle ? is measured around z-axis as 0<=?<2?,
angle ? is measured from plane XOY as

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charged particle causes an electric flux of -996 N-m2/C to pass through a spherical Gaussian...
A charged particle causes an electric flux of -996 N-m2/C to pass through a spherical Gaussian surface of 9.50 cm radius centered on the charge. (a) If the radius of the Gaussian surface were doubled, how much flux would pass through the surface? (b) What is the charge of the particle?
Two thin plastic spherical shells (shown in cross section in the figure below) are uniformly charged....
Two thin plastic spherical shells (shown in cross section in the figure below) are uniformly charged. The center of the larger sphere is at (0, 0); it has a radius of 12 cm and a uniform positive charge of +7 ✕ 10−9 C. The center of the smaller sphere is at (27 cm, 0); it has a radius of 3 cm and a uniform negative charge of −3 ✕ 10−9 C. (a) What are the components EA,x and EA,y of...
A charged point particle is placed at the center of a spherical Gaussian surface. The electric...
A charged point particle is placed at the center of a spherical Gaussian surface. The electric flux ΦE is changed if:
Two concentric uniform thin spherical shells have masses M1 and M2 and radii a and 2a....
Two concentric uniform thin spherical shells have masses M1 and M2 and radii a and 2a. The inner spherical shell is shifted so that its center is now on the x axis at x = 0.8a. What is the magnitude of the gravitational force on a particle of point mass m located on the x axis at the following? (Use any variable or symbol stated above along with the following as necessary: (a) x = 3a
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge...
A solid, nonconducting sphere of radius R = 6.0cm is charged uniformly with an electrical charge of q = 12µC. it is enclosed by a thin conducting concentric spherical shell of inner radius R, the net charge on the shell is zero. a) find the magnitude of the electrical field E1  inside the sphere (r < R) at the distance r1 = 3.0 cm from the center. b) find the magnitude of the electric field E2 outside the shell at the...
1) 2 point charges are separated by a distance of 8 cm. The left charge is...
1) 2 point charges are separated by a distance of 8 cm. The left charge is 48 mC and the right charge is -16mC. Using a full sheet of paper: draw the 2 charges separated by 8cm, centered in the sheet. (if you are missing a ruler estimate 8cm as ⅓ a paper sheet length). [6] a) Draw field lines to indicate the electric fields for this distribution. [4] b) Draw 3 equipotential surfaces, 1 each, that pass: -Through the...