Question

A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0800 m...

A small block with mass 0.0500 kg slides in a vertical circle of radius 0.0800 m on the inside of a circular track. There is no friction between the track and the block. At the bottom of the block's path, the normal force the track exerts on the block has magnitude 3.85 N.

What is the magnitude of the normal force that the track exerts on the block when it is at the top of its path?

Express your answer with the appropriate units.

Homework Answers

Answer #1

Given is :-

The mass of the block m = 0.05kg

The raius of the circular path R=0.08m

The normal force on the block at the bottom of the path N=3.85N

Now,

At the bottom the forces are

By plugging all the values in above equation, we get

Now in the y direction(vertical ) there is only gravitational force is working thus by applying third equation of motion in y direction we get

by plugging all the values we get

now by equating force at the top of the path

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.550 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.550 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.85 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m...
A small block with mass 0.0400 kg slides in a vertical circle of radius 0.600 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 4.05 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m...
A small block with mass 0.0475 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A , the magnitude of the normal force exerted on the block by the track has magnitude 3.75 N . In this same revolution, when the block reaches the top of its path, point B , the magnitude...
A small block with mass 0.0350 kg slides in a vertical circle of radius 0.450 m...
A small block with mass 0.0350 kg slides in a vertical circle of radius 0.450 m on the inside of a circular track. During one of the revolutions of the block, when the block is at the bottom of its path, point A, the magnitude of the normal force exerted on the block by the track has magnitude 3.90 N . In this same revolution, when the block reaches the top of its path, point B, the magnitude of the...
A block of mass m is initially held at rest at point P on an incline...
A block of mass m is initially held at rest at point P on an incline that makes an angle q with respect to horizontal. The coefficient of kinetic friction between the block and the incline is mk. After the block slides down the incline from point P, it starts to slide without friction up a vertical circular track of radius R. When it reaches the top of the circle, the normal force (downward) by the track to the block...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
In her hand, a softball pitcher swings a ball of mass 0.254 kg around a vertical...
In her hand, a softball pitcher swings a ball of mass 0.254 kg around a vertical circular path of radius 59.4 cm before releasing it from her hand. The pitcher maintains a component of force on the ball of constant magnitude 29.8 N in the direction of motion around the complete path. The speed of the ball at the top of the circle is 15.7 m/s. If she releases the ball at the bottom of the circle, what is its...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until...
A block of mass 0.630 kg is pushed against a horizontal spring of negligible mass until the spring is compressed a distance x. The force constant of the spring is 450 N/m. When it is released, the block travels along a frictionless, horizontal surface to point circled A, the bottom of a vertical circular track of radius R = 1.00 m, and continues to move up the track. The speed of the block at the bottom of the track is...
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.20 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Part A Determine the speed of the block with mass m = 1.50 kg after the collision. Express your answer...
1. A motorcycle with a mass of 92 kg is inside of a vertical loop with...
1. A motorcycle with a mass of 92 kg is inside of a vertical loop with a radius 15 meters. At the bottom the only forces acting motorcycle in the normal force and weight force. At the bottom, the amount of the normal force is 2.5 times the motorcycle's weight. As it moves to the side of the circle, some other forces act on it. But when it reaches the side, only the normal force and the weight are acting...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT