Question

Two masses, m_{1}= 1.00 kg and m_{2}= 2.00 kg,
are attached to the ends of a light cord, which passes over a
frictionless pulley in the shape of a uniform disk of mass 3.00 kg.
How long does it take the 2.00 kg mass to fall a vertical distance
of 1.00 m? What is the tension of either side of the pulley?

(Answers: t= 0.958 sec; T_{1}= 12.0 N; T_{2}=
15.2 N I just need help with the steps for solving this
problem)

Answer #1

An Atwood's machine consists of blocks of masses
m1 = 12.0 kg
and
m2 = 22.0 kg
attached by a cord running over a pulley as in the figure below.
The pulley is a solid cylinder with mass
M = 7.60 kg
and radius
r = 0.200 m.
The block of mass m2 is allowed to drop, and
the cord turns the pulley without slipping.
Two objects, blocks labeled m1 and
m2, are connected to a cord which is hung...

An Atwood's machine consists of blocks of masses m1 = 13.0 kg
and m2 = 19.0 kg attached by a cord running over a pulley as in the
figure below. The pulley is a solid cylinder with mass M = 9.20 kg
and radius r = 0.200 m. The block of mass m2 is allowed to drop,
and the cord turns the pulley without slipping.
(a) Why must the tension T2 be greater than
the tension T1?
This answer has...

Two packing crates of masses
m1 = 10.0 kg
and
m2 = 4.70 kg
are connected by a light string that passes over a frictionless
pulley as in the figure below. The 4.70-kg crate lies on a smooth
incline of angle 35.0°. Find the following.
Two crates are connected to each other by a string that passes
over a pulley, which is attached to the top corner of a wedge. The
crate of mass m1 hangs freely below the pulley....

Objects with masses m1 = 12.0 kg and
m2 = 8.0 kg are connected by a light string
that passes over a frictionless pulley as in the figure below. If,
when the system starts from rest, m2 falls 1.00
m in 1.48 s, determine the coefficient of kinetic friction between
m1 and the table.
Express the friction force in terms of the coefficient of kinetic
friction. Obtain an expression for the acceleration in terms of the
masses and the...

Two objects with masses of m1 = 3.90 kg and
m2 = 5.70 kg are connected by a light string
that passes over a frictionless pulley, as in the figure below.
A string passes over a pulley which is suspended from a
horizontal surface. A circular object of mass
m1 and a rectangular object of
m2 are, respectively, attached to the left and
right ends of the string.
(a) Determine the tension in the string. (Enter the magnitude
only. Due...

Objects with masses m1 = 11.0 kg and
m2 = 8.0 kg are connected by a light string
that passes over a frictionless pulley as in the figure below. If,
when the system starts from rest, m2 falls 1.00
m in 1.54 s, determine the coefficient of kinetic friction between
m1 and the table.

Three blocks of masses m1=1.00 kg,
m2=2.00 kg, and m3=3.00 kg
are set at rest on a level air track from right to left. Then
m3 is pushed toward m2 with
a speed of 3.00 m/s. Assuming that all collisions are elastic, what
are the final speeds of (a) m1, (b)
m2, and (c) m3?

A mass m1 is connected by a light string that passes
over a pulley of mass M to a mass m2 sliding on a
frictionless horizontal surface as shown in the figure. There is no
slippage between the string and the pulley. The pulley has a radius
of 25.0 cm and a moment of inertia of ½ MR2. If
m1 is 1.00 kg, m2 is 2.00 kg, and M is 4.00
kg, then what is the tension in the string...

Two masses M1=2kg and M2 are attached by a massless cord over a
solid pulley wheel of mass M=4kg, and radius R=5cm. Static Friction
between the cord and the pulley makes the pulley rotate
counter-clockwise when the system is released from rest, M1
accelerates with a magnitude of 3.92 m/s2 .
a) Draw and label the forces acting on the two blocks, and the
pulley. (6 points)
b) Find the tension in the cord between the pulley and M1 (6...

A m1 = 13.5 kg object and a
m2 = 10.0 kg object are suspended, joined by a
cord that passes over a pulley with a radius of 10.0 cm and a mass
of 3.00 kg (Fig. P10.46). The cord has a negligible mass and does
not slip on the pulley. The pulley rotates on its axis without
friction. The objects start from rest 3.00 m apart. Treating the
pulley as a uniform disk,determine the speeds of the two objects...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 12 minutes ago

asked 18 minutes ago

asked 20 minutes ago

asked 36 minutes ago

asked 38 minutes ago

asked 38 minutes ago

asked 53 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago