Question

Find the energy of a photon of wavelength 500 nm that is traveling in vacuum. Express...

Find the energy of a photon of wavelength 500 nm that is traveling in vacuum. Express your result in eV

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) Calculate the wavelength of light in vacuum that has a frequency of 5.14 ✕ 1018...
(a) Calculate the wavelength of light in vacuum that has a frequency of 5.14 ✕ 1018 Hz. nm (b) What is its wavelength in crown glass? nm (c) Calculate the energy of one photon of such light in vacuum. Express the answer in electron volts. eV (d) Does the energy of the photon change when it enters the crown glass? The energy of the photon does not change. The energy of the photon changes. Explain why?
(a) An electron has a kinetic energy of 6.23 eV. Find its wavelength. nm (b) A...
(a) An electron has a kinetic energy of 6.23 eV. Find its wavelength. nm (b) A photon has energy 6.23 eV. Find its wavelength. nm
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 507 nm. What is the work function W0 of this metal? Express your answer in electron volts. In the Compton effect, an X-ray photon of wavelength 0.16 nm is incident on a stationary electron. Upon collision with the electron, the scattered X-ray photon continues to travel in...
An atom absorbs a photon with wavelength 500 nm and subsequently emits a photon with wavelength...
An atom absorbs a photon with wavelength 500 nm and subsequently emits a photon with wavelength 660 nm. a) Determine the energy absorbed by the atom. b) Assume that the atom is a solid particle with mass 3.3×10−26 kg and is initially at rest. Determine the speed of the atom after it has emitted the photon, assuming that any additional energy it acquired only contributed to its motion. Can you do part b step by step, which equations are required?
Find the energy of the following. Express your answers in units of electron volts, noting that...
Find the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 10-19 J. (a) a photon having a frequency of 6.20 1017 Hz eV (b) a photon having a wavelength of 2.20 102 nm eV
Find the energy of the following. Express your answers in units of electron volts, noting that...
Find the energy of the following. Express your answers in units of electron volts, noting that 1 eV = 1.60 10-19 J. (a) a photon having a frequency of 4.20 1017 Hz eV (b) a photon having a wavelength of 6.20 102 nm eV
A photon of wavelength 0.04320 nm strikes a free electron and is scattered at an angle...
A photon of wavelength 0.04320 nm strikes a free electron and is scattered at an angle of 37.0 ? from its original direction. Find the change in energy of the photon. Is the change in energy of the photon a loss or a gain ? Find the energy gained by the electron. please do it in eV
1. What is the energy in eV and wavelength in µm of a photon that, when...
1. What is the energy in eV and wavelength in µm of a photon that, when absorbed by a hydrogen atom, could cause a transition from the n= 4 to the n= 8 energy level? a) energy in eV b) wavelength in µm 2. The so-called Lyman-αphoton is the lowest energy photon in the Lyman series of hydrogen and results from an electron transitioning from the n= 2 to the n= 1 energy level. Determine the energy in eV and...
a) What is the energy of a photon (in eV) that has a wavelength of 466...
a) What is the energy of a photon (in eV) that has a wavelength of 466 nm? (3 digit answer) b) What is the energy (in eV) of a photon that has a wavelength of 460 nm? c) What is the wavelength of a photon that has 2.1 eV of kinetic energy? (format of a.b x 10-c m ) d) a photoelectric surface has a work function of 2.00 eV. What is the threshold frequency of this surface?  (format of a.bc...
(a) An electron has kinetic energy 6.00 eV. Find its wavelength. m ( b) A photon...
(a) An electron has kinetic energy 6.00 eV. Find its wavelength. m ( b) A photon has energy 6.00 eV. Find its wavelength. m